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Foreword
Welcome to "Python for Experienced Java Developers." This book
represents a unique experiment at the intersection of human expertise and
artificial intelligence. With decades of experience in various programming
languages and particularly with Java since its version 1.1, I embarked on a
journey to learn and master Python with the assistance of ChatGPT, an
advanced AI language model.

When I began this project, I had no prior knowledge of the Python
programming language. However, my extensive background in software
development equipped me with a clear understanding of what I wanted to
learn about Python. This book is the result of my collaboration with
ChatGPT, crafted under my guidance and shaped by my expertise.

The process of creating this book was both innovative and intensive. It
started with ChatGPT generating a proposed outline for each chapter. From
there, ChatGPT provided detailed suggestions for each point in the outline.
My role involved shortening, rearranging, and refining the text, correcting
and enhancing Python examples, running and testing every line of code
provided by ChatGPT, and often creating entirely new examples. Finally, I
turned to ChatGPT again to make final corrections on the wording. This
iterative process ensured that while ChatGPT had the first and last word on
every chapter, the content in between required a significant amount of my
effort and insight.

The result is the book I envisioned: a concise, focused guide that doesn’t
waste pages on basics such as list manipulations, object orientation, or
functional programming—concepts that every experienced Java
programmer is already well-acquainted with. Instead, this book delves
deeply into the unique features and capabilities that Python offers,
providing a rich learning experience for seasoned developers.

I hope that other experienced software developers will appreciate the
outcome of this experiment as much as I do. Whether you are looking to



add Python to your skill set or to deepen your understanding of its advanced
features, I believe you will find this book both valuable and enjoyable.

Enjoy your journey into Python!



Part I
Setting Up Your Development

Environment



Chapter 1
Installing Python

Other components, such as IDEs and development tools, depend on the
presence of Python. Therefore, installing Python first ensures that these
tools have the necessary runtime environment.
Here are the steps you need to follow:

1.1 Downloading Python

Visit the official Python website at python.org.
Navigate to the "Downloads" section.
Choose the appropriate installer based on your operating system:
Windows, macOS, or Linux.
Select the desired Python version (Python 3.x is recommended for
most projects, this book is based on Python 3.11.8).

1.2 Running the Installer

Once the installer is downloaded, double-click to run it.
Follow the prompts in the installation wizard.
On Windows, ensure the option to add Python to PATH is selected.
This allows Python to be accessible from the command line.
On macOS and Linux, Python is typically installed by default. Ensure
you are installing the desired version if multiple versions are available.

1.3 Verification

After the installation is complete, open a terminal or command prompt.
Run python --version to verify the installation.
You should see the installed Python version displayed.

1.4 Updating Pip (Python Package Installer)



Pip is the default package manager for Python, used to install
additional libraries and packages. Further details about packages will
be provided in a later chapter.
Run python -m pip install --upgrade pip to ensure you have the
latest version of pip installed.



Chapter 2
Choosing an IDE

In addition to specialized Integrated Development Environments (IDEs), it
is worth noting that popular Java IDEs like IntelliJ IDEA and Eclipse also
support Python development. In this book, we will primarily focus on using
IntelliJ IDEA Community Edition (Version 2023.3.4) for Python
development.
While IntelliJ IDEA Community Edition provides robust support for
Python, it is important to recognize that there are IDEs specifically tailored
for Python development.

Here are some of the most popular Python IDEs, all favored by AI
developers for their extensive features and strong Python support.

PyCharm: Developed by JetBrains, PyCharm is a powerful IDE with a rich
set of features tailored for Python development. PyCharm offers intelligent
code completion, debugging tools, integration with version control systems,
and support for popular AI libraries like TensorFlow, PyTorch, and scikit-
learn.

Jupyter Notebook / JupyterLab: Jupyter Notebook is a web-based
interactive computing environment that allows developers to create and
share documents containing live code, equations, visualizations, and
narrative text. Jupyter Notebook was initially developed by a team of
researchers led by Fernando Pérez and Brian Granger. They began
developing Jupyter Notebook in 2011 as part of the IPython project, an
interactive computing environment for Python. It is widely used in the AI
and data science community for prototyping, experimentation, and
collaboration. JupyterLab is an enhanced version of Jupyter Notebook with
a more comprehensive interface and additional features.

Google Colab: A free, cloud-based Jupyter notebook environment provided
by Google. It allows developers to write and execute Python code in a
browser-based interface, with access to powerful computing resources
provided by Google’s infrastructure.



Spyder: An IDE specifically designed for scientific computing and data
analysis, developed by the Spyder Project Contributors, an open-source
community of developers. It provides features such as an interactive
console, variable explorer, debugger, and support for plotting libraries like
Matplotlib and seaborn. Spyder is popular among AI developers for its ease
of use and integration with scientific computing libraries.

Visual Studio Code (VS Code): A lightweight and versatile IDE
developed by Microsoft. VS Code offers extensive customization options
and support for Python through plugins like Python and Pylance.

Atom: A customizable and open-source text editor developed by GitHub. It
offers features such as syntax highlighting, code folding, and package
management. Atom is popular among AI developers for its flexibility and
support for plugins that extend its functionality for AI development.



Chapter 3
Create Your First Project

3.1 Project Creation

Launch IntelliJ IDEA and create a new project.
Select "Python" as the programming language.
If this is your first Python project you will see a list of available
plugins. Select the Python Community Edition plugin and install it.
If you have more than one Python version installed, make sure that you
choose the right version of the Python interpreter.
Eventually select the creation of a repository for your VCS, for
example GIT and leave all other parameters as they are.
Press the Create button.

3.2 Select the Python Interpreter

Navigate to File →Project Structure →Project Settings →Project.
For SDK, select a Python SDK from the dropdown menu.
Apply the changes and close the settings window.

3.3 Other Configurations

Additionally, you may want to consider other configurations such as version
control management, configuring code style, and adjusting editor settings
for features like code completion. These tasks can be configured in a
manner similar to Java.

3.4 Create a Directory Structure

While Java projects typically adhere to a mandatory directory structure
when using a Gradle-based build process, Python projects do not have such
strict requirements. However, organizing your Python project into a
structured directory layout can significantly enhance maintainability,
collaboration, and ease of development. Here is a proposed directory
structure that you will need to create manually.



project_name/
|- src/
| |- package_name/
| | |- __init__.py
| | |- module1.py
| | |- module2.py
|- tests/
| |- test_package_name/
| | |- test_module1.py
| | |- test_module2.py
|- docs/
| |- conf.py
| |- index.rst
|- data/
| |- dataset1.csv
| |- dataset2.json
|- README.md
|- LICENSE
|- requirements.txt
|- .gitignore.

src/: Contains the source code of the project, organized into packages and
modules. Each package may contain submodules and related files. This will
be explained in a later chapter.

tests/: Contains unit tests and test scripts for testing the functionality of
the project. Tests should be organized to mirror the structure of the src
directory.

docs/: Contains project documentation, like configuration files for
documentation tools such as Sphinx (conf.py) or the main documentation
file (index.rst).

data/: Contains data files or datasets used by the project. This directory
may also include any generated or processed data files.

README.md: Provides an overview of the project, including installation
instructions, usage examples, and other relevant information.

LICENSE: Contains the project’s license file specifying the terms of use and
distribution.



requirements.txt: The file lists project dependencies and their versions,
enabling easy installation of dependencies using pip. The contents of this
file will be explained in a later chapter.

.gitignore: Specifies files and directories to be ignored by the GIT
version control systems.

3.5 Run a Test Program

As a final step to test that your IDE is properly set up, write a small ’Hello
World’ program and run it in the console window:

In IntelliJ IDEA, select a directory in the src branch of your directory
tree, do a right mouse click and select

New→Python File.

Enter a name for your Python file, for example hello_world.py.
In the newly created Python file, enter the following code:

print("Hello World")

Right-click on the Python file in the project explorer and select:

Run ’Hello_World’.

After running the program, you should see Hello World printed in the
console output window at the bottom of the IntelliJ IDEA interface.



Part II
The Python Language



Chapter 4
Syntax: Python vs Java

4.1 Basic Syntax Differences

In contrast to Java, Python syntax diverges from the C-like style. Here are
some fundamental syntax differences between Python and Java:

Indentation vs. Braces: Python uses indentation to define blocks of code,
such as loops, functions, and conditionals instead of delineating code with
braces .

Semicolons: Python does not require semicolons at the end of statements.
However, you can use semicolons to separate multiple statements on the
same line.

Comments: Python supports single-line comments denoted by the #
symbol and multi-line comments using triple quotes ’’’ or """.
# This is a single-line comment 
""" 
This is a 
multi-line comment 
"""
 

Strings: In Python, strings can be defined using single (’) or double (")
quotes interchangeably. The == operator checks whether the content of two
strings is the same, whereas the is operator can be used to check whether
two string variables refer to the same object in memory.

Line Continuation: In Python, unlike Java, continuing a statement on the
next line typically requires the continuation character \ at the line’s end.
However, an important exception exists: Within parentheses, brackets, or
braces (), [], {}, line continuation is implicit and doesn’t necessitate any
special syntax.
long_string = "This string spans \ 
two lines." 
 



print("Hello", 
      "World")
 

4.2 Data Types

Python supports various built-in data types, including:

int

Integer numbers without decimal points (e.g., 10, -5, 1000). In Python,
there is no predefined limit on the size of integers like there is for int and
long in Java. As long as your computer’s memory can accommodate it,
Python can handle very large integer values.

float

Floating-point numbers with decimal points (e.g., 3.14, -0.5, 2.718). They
represent floating-point numbers with double precision according to the
IEEE 754 standard, typically providing around 15 decimal digits of
precision. There is no distinct type specifically for single precision floating-
point numbers like in Java.

complex

Complex numbers with real and imaginary parts (e.g., 3+4j, -2-5j).

str

Strings representing immutable sequences of unicode characters.

String literals can be written with single or double quotes, allowing the use
of the other quote type inside the string.

"He said: ’Hello!’"

’He said: "Hello!"’

As with comments, triple quotes for multiline string literals are supported as
well.



String literals can contain arbitrary Unicode characters, either directly typed
in or represented as code points or Unicode literals.

"Greek letter alpha: α’

"Greek letter alpha: \u03B1’

"Greek letter alpha: \N{GREEK SMALL LETTER ALPHA}’

There are special string literals called f-strings that evaluate expressions
within braces {} and replace them with their values.

f"value of x = {x}"

bool

Boolean values representing True or False.

bytes

bytes objects can store immutable sequences of bytes, representing binary
data ranging from 0 to 255.

bytes objects can be created using

a bytes literal prefixed with b, for example b"Hello", b"x48x65"
the bytes() constructor who accepts a variety of input parameters, for
example: 
bytes(65)

bytes([72, 91])
bytes("Hello", "utf-8") # String "Hello" in utf-8 encoding

Python has two additional numerical operators that Java does not have: **
for exponentiation and // for floor division.

In Java, you would use

Math.pow(a, b)

for exponentiation and

Math.floor(a / b)



for floor division.

4.3 Variable Declarations

Python is a dynamically typed language, meaning that variables do not
require explicit type declarations. Instead, the type of a variable is inferred
at runtime based on the value assigned to it.

Therefore, variables in Python are declared by simply assigning a value to a
name.
# Integer variable 
my_integer = 10 
 
# Float variable 
my_float = 3.14 
 
# String variable 
my_string = "Hello World!"
 

This example also demonstrates that, unlike Java, static variables in Python
can be defined outside of class definitions simply by declaring them in the
top-level scope.

In Python, variables can dynamically change their type based on the
assigned value at any time.
# Assigning with a string 
my_variable = "Hello" 
print(type(my_variable))  # <class ’str’> 
 
# Reassigning with a boolean 
my_variable = True 
print(type(my_variable))  # <class ’bool’>
 

4.4 Control Flow Statements

4.4.1 if-else Statements



In Python, if-else statements function similarly to those in Java, with the
distinction that they do not require braces for the condition and utilize
indentations to differentiate the if and else blocks within the statement.

Conditions are written similarly to Java, but Python uses and and or instead
of && and || for logical operations.
if x > 0 and y > 0: 
    print("both numbers are positive") 
else: 
    print("at least one number is non-positive")
 

In Python, there is no switch statement, but using elif statements
(abbreviation for else if) serves a similar purpose.
if argument == 1: 
    print("Case 1") 
elif argument == 2: 
    print("Case 2") 
elif argument == 3: 
    print("Case 3") 
else: 
    print("Default case")
 

In contrast to Java, in Python, the terms "truthy" and "falsy" are used to
describe values that evaluate to True or False in a boolean context,
respectively. These concepts are similar to Java, but there are some
differences in how certain values are evaluated.

Truthy values: In Python, this includes non-zero numbers, non-empty
sequences (lists, tuples, strings), and non-empty containers (dictionaries,
sets) (Sequences and containers will be discussed in Chapter 6: Python’s
Data Structures.). Additionally, objects with a __bool__() method
returning True or a __len__() method returning a non-zero value are
considered truthy (Objects and methods will be discussed in Chapter 5:
Object-Oriented Programming).

Falsy values: In Python, this includes False, None, numeric zero (0, 0.0),
empty sequences ([], (), ""), empty containers ({}), and objects with a
__bool__() method returning False or a __len__() method returning zero.



x = [] 
 
if x: 
    print("x is not empty") 
else: 
    print("x is empty") 
 
# x is empty
 

In Python, variables defined within blocks of if statements and loops do not
have restricted visibility and are accessible outside these blocks, unlike in
Java:
x = 2 
 
if x > 0: 
    result = "x is positive" 
else: 
    result = "x is not positive" 
 
print(result)  # x is positive
 

Python also supports a ternary operator, which provides a compact way to
evaluate expressions based on a condition.

The syntax

x if condition else y

is equivalent to the Java’s

condition ? x : y

Here is a short example:
x = 2 
 
print("even" if x % 2 == 0 else "odd")  # even
 

4.4.2 for Loops



In Python, for loops can iterate over elements of sequences such as strings,
lists, tuples, sets, etc ( Lists, tuples, and sets will be discussed in Chapter 6:
Python’s Data Structures.).

To emulate the behavior of a for loop that operates on integer indices, as
commonly seen in languages like Java, Python provides the range()
function. This function generates a sequence of integer numbers.
for fruit in ["apple", "banana", "cherry"]: 
    print(fruit, end=" ")  # apple banana cherry 
 
for char in "Hello": 
    print(char, end=" ")  # H e l l o 
 
 
for i in range(3, 10, 2): # (start, stop, step) 
    print(i, end=" ")  # 3 5 7 9
 

The end parameter in the print() function specifies the character or string
to print at the end of the output, replacing the default newline (\n).

4.4.3 while Loops

Except for the syntax, while loops work the same way as in Java.
x = 0 
while x < 5: 
    print(x)  # 0 1 2 3 4 
    x += 1
 

4.4.4 Nested Blocks

In Python, the number of white spaces or tabs used for indentation is crucial
for the interpreter to discern the code’s structure and determine which
statements belong to which blocks. Indentation can be achieved using either
spaces or tabs.

While Python doesn’t enforce a specific number of spaces for indentation, it
is recommended to follow Python’s official style guide, PEP 8, which



suggests using 4 spaces for each level of indentation.

Consistency in indentation within the same block is essential across the
entire codebase. Mixing spaces and tabs for indentation is discouraged and
may result in a TabError.
for i in range(3): 
    print("Outer loop:", i) 
    for j in range(2): 
        print("Inner loop:", j) 
    print("Back to outer loop") 
 
   # This creates an IndentationError 
   print("Still on outer loop")
 

4.4.5 break, continue, pass

Python provides control flow keywords such as break, continue, and pass to
modify the behavior of loops and if-else statements.

break: Terminates the loop immediately.

continue: Skips the remaining code in the current iteration and moves to
the next iteration of the loop.

pass: Acts as a placeholder and does nothing. It is commonly used when a
statement is syntactically required but no action is needed.
for i in range(-20,20): 
    if i < 5: 
        continue 
 
    print(i)  # 5 6 7 8 9 10 
 
    if i >= 10: 
        break 
 
# This loop does nothing, but would not 
# compile without the pass statement 
 
for i in range(10): 
    pass
 



In Python, loops (for and while) can have an optional else clause that is
executed when the loop completes normally, without encountering a break
statement. This construct can be particularly useful for tasks where you
need to verify that the loop ran to completion:
for i in range(5): 
    if i == 3: 
        print("Value 3 found") 
        break 
else: 
    print("Value 3 not found") 
 
# Value 3 found 
 
for i in range(5): 
    if i == -1: 
        print("Value -1 found") 
        break 
else: 
    print("Value -1 not found") 
 
# Value -1 not found
 

4.5 Functions

4.5.1 Definition and Invocation

In Python, you can define a function using the def keyword, followed by
the function name and its parameters (if any).

Unlike Java, functions can be defined at the top-level scope outside of class
definitions, akin to static methods in Java.

Additionally, unlike in Java, functions must be defined in the code before
they can be called.

Similar to Java, parameters in Python are specified within the parentheses
following the function name.

In Python, local variables are declared simply by assigning a value.



This means that the syntax for assigning to a global and a local variable is
the same. To clarify that an assignment in a function body is for a global
variable, you need to use the global keyword beforehand.
last_name = "" 
 
 
def greet(name): 
    global last_name 
    last_name = name 
 
    return f"Hello {name}!" 
 
 
message = greet("John") 
 
print(message)  # Hello John! 
print(last_name)  # John
 

In Python, as in Java, methods are functions associated with objects. They
are invoked using dot notation on an object of a specific type. For example,
strings have built-in methods like upper() and split().
string1 = "hello, world!" 
print(string1.upper())  # HELLO, WORLD! 
 
string2 = "a,b,c" 
print(string2.split(","))  # [’a’, ’b’, ’c’]
 

4.5.2 Unused Parameters

In Python, a common convention for marking unused parameters in
functions is to name them _, __, ___, and so on, for each unused parameter.
def func(_, __, ___, x): 
    print(x) 
 
 
func(1, 2, 3, "Hello")  # Hello
 

4.5.3 Variable Argument Lists



Variable argument lists for functions and methods are also available in
Python, indicated by the * symbol.

However, unlike Java, in Python, the function receives the parameters as a
tuple, not as an array (Tuples will be discussed in Chapter 6: Python’s Data
Structures.).
def func(*args): 
    print(args) 
 
 
func(1, "hello")  # (1, ’hello’) 
func()  # ()
 

4.5.4 Default Parameters and Keyword Arguments

You can specify default parameter values for functions. If a parameter is not
provided when the function is called, it will use the default value.

Default values can only be assigned to parameters that appear at the end of
the parameter list. Once a default value is assigned to a parameter, all
subsequent parameters must also have default values.

In function calls, keyword arguments are supported, enabling you to specify
arguments by their parameter names when calling a function.

It is important to note that if a function call has both positional and keyword
arguments, positional arguments must be specified first in the function call.
def greet(name, age, city="Unknown"): 
    print(f"Hello, {name}!") 
    print(f"You are {age} years old.") 
    print(f"You live in {city}.") 
 
 
# Positional parameters only 
greet("Alice", 30) 
# Hello, Alice! 
# You are 30 years old. 
# You live in Unknown. 
 
# Positional parameters followed by a 



# keyword argument 
greet("Bob", 25, city="New York") 
# Hello, Bob! 
# You are 25 years old. 
# You live in New York. 
 
# Invalid function call: 
# Positional argument follows 
# keyword argument 
greet(name="Alice", 30)
 

Please note that default parameter values are evaluated only once when the
function is defined, not every time the function is called.

Consider the following example:
def func(a=[]): 
    a.append(1) 
    return a 
 
print(func())  # Output: [1] 
print(func())  # Output: [1, 1]
 

When the function func is called for the first time, the default value of a
(which is the empty list [] (Lists will be discussed in Chapter 6: Python’s
Data Structures.)) is used, and the append(1) operation modifies this list by
adding 1 to it.

As a result, the first call to func() returns [1].

However, when the function func is called for the second time, the default
value of a (which is the same list as in the first call) is reused.

Therefore, the second call to func() returns [1, 1], as the list object
modified in the previous call is still referenced by the default value of a.

In Python, the / symbol is used in function definitions to indicate that
parameters preceding it are positional-only. This means they can only be
specified by position and cannot be passed as keyword arguments.
Parameters following the / are either positional-only or positional-or-
keyword.



def func(a, b, c, /, d, e): 
    print(a, b, c, d, e) 
 
 
func(1, 2, 3, 4, 5)  # 1 2 3 4 5 
func(6, 7, 8, 9, e=10)  # 6 7 8 9 10 
 
# This does not work 
# func(6, 7, c=8, d=9, e=10)
 

4.6 Data Type Conversion Functions

Python provides a set of built-in functions that are readily available for
various common operations.

As a start, here are some built-in functions for data type conversion:

int(): Converts a given value to an integer. It can parse numeric strings or
convert floating-point numbers to integers by removing the decimal part
without rounding.

float(): Converts a given value to a floating-point number. It can parse
numeric strings or convert integers to floating-point numbers.

bool(): Converts a given value to a boolean. It returns True if the value is
considered "truthy" and False otherwise. For example, bool(0) returns
False, while bool(1) returns True.

str(): Converts a given value to a string. It can convert numbers, booleans,
or other data types to their string representations. This is equivalent to the
toString() function in Java.

4.7 Top-Level Code

In contrast to Java, which requires all code to be encapsulated within
classes and methods, Python allows top-level code to exist outside of any
functions or classes. This top-level code is executed immediately when the
module is imported or run as a script (Modules and how to import them, as
well as scripts, will be discussed in Chapter 10: Modules and Packages.



For now, you can think of it as a process similar to importing packages in
Java, and running a script is like executing a main method in a Java
program.).

Top-level code in Python is executed in the following scenarios:

When the module containing the code is run as a standalone script.
During the import process, when the module is imported and cached
into memory.

Here is an example to illustrate this concept (The exact meaning of the
__name__ attribute will be discussed in Chapter 10: Modules and
Packages.):
# example.py 
 
print("This is top-level code") 
 
def my_function(): 
    print("This is a function") 
 
if __name__ == "__main__": 
    print("This script is being run directly") 
    my_function() 
else: 
    print("This module is being imported")
 

When you run example.py as a standalone script, the output will be:
This is top-level code 
This script is being run directly 
This is a function
 

When you run another script that imports example.py like this
import example 
 
...
 

the output will be:



This is top-level code 
This module is being imported
 



Chapter 5
Object-Oriented Programming

5.1 Classes and Objects

In Python, similar to Java, a class defines the attributes (data) and methods
(behavior) that all objects of that class will have.

However, there are several key differences compared to Java:

Syntax: Instead of braces {}, Python uses indentations to denote the scope
of classes.

Constructor: In Python, there is only one constructor method named
__init__() that is used to initialize object attributes. To achieve
functionality similar to having multiple constructors in Java, you can use
default parameter values and variable-length argument lists.

Access Modifiers: While Python does not provide explicit access modifiers
like Java (public, private, protected), it does offer conventions such as
single (_) and double (__) underscore prefixes to indicate visibility. These
conventions serve a similar purpose to access modifiers in Java and will be
discussed in a later section.

Method Overloading: Python does not support method overloading based
on different parameter types. Instead, you can utilize default parameter
values and conditional logic within the method to achieve similar
functionality.

Reference to Current Object: In Python, unlike Java, there is no this
keyword. Instead, the constructor and every method within a class need to
have at least one parameter, conventionally named self. Python
automatically passes the object instance as the first argument when you call
a method on an object.

Object Creation: In Python, as in Java, objects are created using the class
name followed by the constructor parameters enclosed in parentheses.



Garbage Collection: Similar to the Java Virtual Machine (JVM), the
Python interpreter utilizes a reference counting mechanism along with a
cycle detection algorithm to manage memory.

Null reference: Python’s None reference is equivalent to null in Java.

object class: As in Java, in Python, all classes ultimately inherit from a
built-in class called object. This class provides default implementations for
a variety of special methods, often referred to as dunder methods (double
underscore methods). These dunder methods allow objects to interact with
built-in language features, such as __eq__ for the equality operator, __str__
for the str() function, and __init__ for object initialization.

Equality Operators: In Python, similar to Java, there are two equality
operators for objects.

The == operator checks for equality of values, comparing the contents of
two objects. On the other hand, the is operator checks for identity,
determining whether two variables reference the exact same object in
memory.

In Python the == operator invokes the __eq__() method, which by default
compares values like the is operator. However, the behavior of __eq__()
can be customized by overriding it, as is often done for many standard
objects like numbers, strings, lists or sets.
class Pair: 
    x = 0 
    y = 0 
 
    def __init__(self, x=0, y=0): 
        self.x = x 
        self.y = y 
 
    def print_xy(self): 
        print(f"x = {self.x} y = {self.y}") 
 
    def __eq__(self, other): 
        if type(other).__name__ == "Pair": 
            return (self.x == other.x and 
                    self.y == other.y) 
        else: 



            return False 
 
 
obj_1 = None 
print(obj_1 is None)  # True 
 
obj_1 = Pair(10) 
obj_1.print_xy()  # x = 10 y = 0 
 
obj_2 = Pair(10, 0) 
obj_3 = obj_1 
print(obj_2 == obj_1)  # True 
print(obj_2 is obj_1)  # False 
print(obj_3 is obj_1)  # True 
print(obj_1 == 10)  # False
 

In contrast to Java, in Python attributes need to be added by any method at
runtime, typically within an __init__ method, simply by assigning them a
value, as demonstrated by the self.x and self.y attributes in the previous
example. These dynamically created attributes are referred to as instance
variables because each instance of a class can have a distinct set of
attributes.

Additionally, the del statement can be used to remove an instance
variable:
class MyClass: 
 
    def __init__(self): 
        self.my_attribute = 42 
 
    def remove_attribute(self): 
        del self.my_attribute 
 
 
obj = MyClass() 
print(obj.my_attribute)  # 42 
 
obj.remove_attribute() 
print(obj.attribute)  # AttributeError
 

In Python, there are also class variables that are similar to static variables in
Java. They are variables that are associated with the class itself rather than



with instances of the class.

Defined within the class definition but outside of any class methods, class
variables are shared by all instances of the class.

Here is an example:
class MyClass: 
    x = "Hello" 
 
    def print_x(self): 
        print(MyClass.x) 
 
 
obj1 = MyClass() 
obj2 = MyClass() 
 
obj1.print_x()  # Hello 
obj2.print_x()  # Hello 
 
MyClass.x = "Bye" 
obj1.print_x()  # Bye 
obj2.print_x()  # Bye
 

Please note that in the example above del MyClass.x is possible as well, it
removes the class attribute.

As in Java, accessing class attributes through instance objects is possible,
but it should be avoided for clarity and consistency.

In the example above, the statement obj1.x = "Good Morning" is possible
but would create an instance variable obj1.x, so obj1.print_x() would
still print the old value of x and not "Good Morning".

5.2 Inheritance

In Python, a subclass of an existing class is defined by specifying the name
of the parent class in parentheses after the subclass name.

Subclasses inherit all attributes and methods from their parent class, and
they can access and use these inherited members as if they were defined



directly within the subclass itself. Unlike Java, Python does not enforce
access restrictions on inherited members, meaning that the parent class
cannot prevent them from being used by a subclass.

In contrast to Java, Python does not automatically invoke the constructor of
the superclass from a subclass constructor.

Instead, if the subclass does not define its own constructor, Python
automatically looks for a constructor in the superclass. If found, it is called
automatically. However, if the subclass defines its own constructor, it must
explicitly call the superclass constructor if desired, typically using
super().__init__(). But this step is not mandatory, and failing to do so
will not result in a compile error.

Subclasses can override methods of the parent class without any special
annotation like @override in Java. When overriding methods in a subclass,
the super() function can be used to call the overridden method in the
superclass.

To determine whether an object is an instance of a class or one of its
subclasses, you can utilize the isinstance() function.

Here is a code sample demonstrating the usage of all these concepts:
class Animal: 
    def __init__(self, name): 
        self.name = name 
 
    def sound(self): 
        pass 
 
 
class Cat(Animal): 
    def __init__(self, name, color): 
        super().__init__(name) 
        self.color = color 
 
    def sound(self): 
        return "Meow!" 
 
 
our_cat = Cat("Louis", "tabby") 
 



print(our_cat.sound())  # Meow! 
print(our_cat.name)  # Louis 
print(our_cat.color)  # tabby 
 
print(isinstance(our_cat, Cat))  # True 
print(isinstance(our_cat, Animal)) # True
 

5.3 Multiple Inheritance

Multiple inheritance is a feature supported by Python, but its popularity
varies among developers and is often a topic of debate.

Nevertheless, multiple inheritance is used frequently, even within Python’s
built-in libraries, to implement what is called a mixin in object-oriented
programming: Small, reusable pieces of code that can be "mixed in" to
multiple classes to provide common functionality. Therefore, we will
briefly describe multiple inheritance here.

In Python, multiple inheritance is achieved by listing more than one parent
class inside parentheses after the subclass name.
class Animal: 
    def speak(self): 
        print("Animal speaks") 
 
 
class Bird: 
    def fly(self): 
        print("Bird flies") 
 
 
class Parrot(Animal, Bird): 
    def __init__(self, name): 
        self.name = name 
 
    def speak(self): 
        print(f"{self.name}, {self.name}") 
 
 
parrot = Parrot("Polly") 
parrot.speak()  # Polly, Polly 
parrot.fly()    # Bird flies
 



In Python, the Method Resolution Order (MRO) determines the sequence in
which methods are sought and invoked, especially in the context of multiple
inheritance to address the so-called diamond problem.

The MRO is a list of classes that dictates the order in which Python
searches for method implementations when a method is called on an object.

The MRO list is generated using the C3 linearization algorithm, which
considers the inheritance hierarchy and the order of parent classes to
establish the method resolution sequence. The resulting list defines the
order in which Python scans for methods in the class hierarchy.

Notably, methods of classes positioned earlier in the parent class list of a
subclass hold higher precedence compared to those listed later.

To explicitly call an overridden method in a class with lower hierarchy, you
can use the super() function with a class name or explicitly specify the
name of the class whose method you want to call.

Here is an example to demonstrate what the MRO looks like:
class A: 
    def method(self): 
        print("A’s method") 
 
 
class B(A): 
    def method(self): 
        print("B’s method") 
 
 
class C(A): 
    def method(self): 
        print("C’s method") 
 
 
class D(B, C): 
    def method(self): 
        super().method()  # Calls B’s method 
        C.method(self)  # Calls C’s method 
 
        # Calls first class in MRO after C 
        super(C, self).method()  # : Calls A’s method 



 
 
d = D() 
d.method()  # B’s method, C’s method, A’s method 
 
# MRO as list of classes 
print(type(d).__mro__)  # D, B, C, A, object
 

5.4 Access Modifiers

5.4.1 Using _ and __ Prefixes

Protected members of a class are conventionally indicated by prefixing their
names with a single underscore (_).

While this doesn’t enforce strict protection, it signals to other developers
that these members are intended for internal use within the class or its
subclasses.

Private members in Python are denoted by prefixing their names with
double underscores (__). This naming convention triggers name mangling,
making it more difficult for external code to access or modify these
members directly.

Mangling works as follows:

When a member of a class is prefixed with double underscores (__), Python
internally renames the member by adding the class name as a prefix to the
original member name.

This renaming process occurs during compilation, not runtime.

For example, if class MyClass has a function named __func(), this function
will be renamed to _MyClass__func() during compilation, and references
to the function in the code will be updated accordingly.

Attributes and methods surrounded by double underscores, such as
__name__ and __init__(), are not subject to name mangling. These are



typically part of Python’s standardized data model and serve specific,
predefined roles within the language.
class MyClass: 
    def __init__(self): 
        self._protected_var = 42 
 
    def _protected_method(self): 
        return "Protected" 
 
    def __private_method(self): 
        return "This is a private method" 
 
 
obj = MyClass() 
 
# These statements compile and run but 
# are marked in the editor as 
# "Access to protected member" 
print(obj._protected_var)  # 42 
print(obj._protected_method())  # Protected 
 
# This code will fail with an AttributeError 
print(obj.__private_method())
 

5.4.2 Setters and Getters via Decorators

Decorators in Python and annotations in Java serve somewhat similar
purposes, but they operate differently and have distinct syntax and
functionality (Decorators will be discussed in Chapter 19: Meta-
Programming.).

Python provides the decorators

@property
@<attr>.setter
@<attr>.deleter

for defining getter, setter, and deleter methods for class attributes.

These decorators provide precise control over attribute access while
preserving the illusion of direct attribute access.



The example below demonstrates their usage.

Please note that in this example, the method radius is overloaded, meaning
there are two methods named radius with different signatures.

Python does not support method overloading in the sense of having multiple
methods with the same name but different parameters. However, Python’s
property feature allows to define getters, setters, and deleters for class
attributes, which can give the appearance of overloading.

This approach is commonly employed alongside property decorators to
define getter, setter, and deleter methods for a single attribute.
class Circle: 
    def __init__(self, radius): 
        self.__radius = radius 
 
    @property 
    def radius(self): 
        return self.__radius 
 
    @radius.setter 
    def radius(self, value): 
        if value <= 0: 
            raise ValueError( 
                "Radius must be positive") 
        self.__radius = value 
 
    @radius.deleter 
    def radius(self): 
        del self.__radius 
 
 
circle = Circle(5) 
 
print(circle.radius)  # 5 
 
circle.radius = 7 
print(circle.radius)  # 7 
 
del circle.radius 
 
print(circle.radius)  # AttributeError
 



5.5 Classes as First Class Objects

In Python, everything is an object, including classes themselves. As such,
classes are instances of the type class.

To obtain the class object of an object, you can use the built-in type()
function.
x = 42 
print(type(x))  # <class ’int’>
 

Of course, you can use the class definition itself to refer to the class object.
class MyClass: 
    def __init__(self, value): 
        self.x = value 
 
 
print(MyClass)  # <class ’__main__.MyClass’>
 

You can also use the type() function to dynamically create class objects by
providing it with a class name, a tuple of base classes, and a dictionary of
attribute and method names with their corresponding values (Tuples and
dictionaries will be discussed in Chapter 6: Python’s Data Structures.).
def init_method(self, value): 
    self.x = value 
 
 
def print_all(self): 
    print(self.a, self.x) 
 
 
name = "MyClass" 
base = (object,) 
attributes_and_methods = { 
    "__init__": init_method, 
    "print": print_all, 
    "a": 1} 
 
MyClass = type(name, base, attributes_and_methods) 
 
obj = MyClass(42) 



obj.print()  # 1 42
 

It is also possible to dynamically add a method to a statically defined class.
class MyClass: 
    x = 42 
 
 
def print_x(self): 
    print(self.x) 
 
 
MyClass.print_x = print_x 
 
obj = MyClass() 
obj.print_x()  # 42
 

Finally, you can also add a method to an instance of a class instead to the
class itself. For this purpose, it is important to understand the distinction
between two types of methods in Python: bound and unbound.

A bound method is a method that is associated with a specific instance of a
class. Since the instance (self) is passed as the first argument to the
method, it can interact with the instance’s attributes and other methods.

On the other hand, an unbound method is a standalone function that is not
associated with any particular instance, similar to a static function in Java.

To add a function as a method to an instance, create a bound method using
types.MethodType:
import types 
 
 
def print_x(self): 
    print(self.x) 
 
 
class MyClass: 
    def __init__(self, value): 
        self.x = value 
 
 



obj = MyClass(42) 
 
obj.print = types.MethodType(print_x, obj) 
obj.print_unbound = print_x 
 
obj.print()  # 42 
obj.print_unbound(obj)  # 42
 

The methods of a class that we have discussed so far are instance methods,
meaning they are executed on an instance of a class.

In addition, there are two other types of methods: static methods and class
methods, which are marked with the decorators (Decorators will be
discussed in Chapter 19: Meta-Programming.) @staticmethod and
@classmethod, respectively.

Similar to Java, a static method is a method that belongs to a class rather
than any instance of the class. It does not require access to the class or its
instances, so it neither takes a reference to the instance (self) nor to the
class (cls) as a parameter.

They are typically used for utility functions that perform a task in isolation
from the class or instance data.
class MathUtils: 
    @staticmethod 
    def add(a, b): 
        return a + b 
 
 
result = MathUtils.add(5, 3) 
print(result)  # 8
 

Class methods are instance methods on the class object. This means they
take a reference to the class object as their first parameter (cls) and can
modify the class state that applies across all instances of the class.

They can be used for various purposes, such as setting configuration
parameters of a class:



class TimeStamp: 
 
    @classmethod 
    def set_date(cls, year, month, day): 
        cls.year = year 
        cls.month = month 
        cls.day = day 
 
 
TimeStamp.set_date(year=2024, month=5, day=16) 
 
time_stamp = TimeStamp() 
print(time_stamp.year)  # 2024
 



Chapter 6
Python’s Data Structures

Python offers similar collections and data structures as Java, albeit with
some differences in implementation and syntax. Both languages provide
common data structures such as list, maps (called dictionaries in Python)
and sets, among others.
In this chapter, we will explore Python’s native data structures, including
lists, dictionaries, sets, tuples and more.

6.1 Lists

Similar to Java, Python lists allow you to store and manipulate collections
of items in an ordered sequence.

Lists are mutable, meaning their elements can be modified after creation.
Python lists are heterogeneous, capable of holding elements of any data
type, including other lists or custom objects.

Like Java, the positions in a Python list are zero-indexed, meaning the first
element of a list has the position zero. It is also possible to use negative
indices starting with -1 from the end of the list.

Python supports various list operators and methods for manipulating lists.
The code sample below demonstrates some common list operators and
methods.
# Creating an empty list 
my_empty_list = [] 
 
# Creating a list 
my_list = [1, 2, 3, 4] 
 
print(my_list[0])  # 1 
print(my_list[-1])  # 4 
 
print(my_list + [5, 6])  # [1, 2, 3, 4, 5, 6] 
print([1, 2] * 3)  # [1, 2, 1, 2, 1, 2] 
 
print(1 in my_list)  # True 



print(7 not in my_list)  # True 
 
print(len(my_list))  # 4 
 
one, two, three, four = my_list 
print(one, two, three, four)  # 1 2 3 4 
 
first, *rest = my_list 
print(first, rest)  # 1 [2, 3, 4] 
 
index = my_list.index(3) 
print(index)  # 2 
 
my_list.append("Hello") 
print(my_list)  # [1, 2, 3, 4, ’Hello’] 
 
del my_list[4] 
print(my_list)  # [1, 2, 3, 4] 
 
my_list.insert(2, 6) 
print(my_list)  # [1, 2, 6, 3, 4] 
 
top = my_list.pop() 
print(top, my_list)  # 4 [1, 2, 6, 3] 
 
my_list.reverse() 
print(my_list)  # [3, 6, 2, 1] 
 
my_list.sort() 
print(my_list)  # [1, 2, 3, 6] 
 
my_list.clear() 
print(my_list)  # [] 
 
count = [1, 2, 2, 2, 3].count(2) 
print(count)  # 3
 

In contrast to Java, Python does not have arrays. Instead, lists of a fixed
length are used.

Multidimensional arrays can be replaced with nested lists:
nested_list = [[1, 2, 3], [3, 4, 6]] 
print(nested_list[1][1])  # 4
 



For generating longer lists with predefined values, Python has a feature
called list comprehension.

It generates the list elements from a for clause, and optionally, additional
for or if clauses.
# List comprehension to generate a list 
# of squared numbers 
squares = [x ** 2 for x in range(1, 5)] 
 
print(squares)  # [1, 4, 9, 16] 
 
# List comprehension to generate squares 
# of even numbers 
even_squares = [x**2 for x in range(1, 10) 
                if x % 2 == 0] 
 
print(even_squares)  # [4, 16, 36, 64] 
 
# List comprehension with two for statements 
pairs = [f"{x}{y}" for x in range(1, 3) 
         for y in range(4, 6)] 
 
print(pairs)  # [’14’, ’15’, ’24’, ’25’]
 

Finally, there is a highly versatile feature for creating sublists of a list,
known as slicing.

The :: operator is utilized in Python’s slicing notation to generate a sublist
of a list. Its syntax is as follows:

list[start:stop:step]

The three parameters can all be omittet and default to start of the list, end of
the list and 1, respectively. When using a negative step, the defaults for start
and stop are the list’s last and first elements, respectively.

The slicing operation is generally safe from exceptions. It can also be used
to make a (shallow) copy of a list by using the slicing operator only with
default values ([:]).

Here are a few examples:



my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
 
even_indexed = my_list[::2] 
print(even_indexed)  # [1, 3, 5, 7, 9] 
 
odd_indexed = my_list[1::2] 
print(odd_indexed)  # [2, 4, 6, 8, 10] 
 
first_five = my_list[:5] 
print(first_five)  # [1, 2, 3, 4, 5] 
 
last_five = my_list[-5:] 
print(last_five) 
 
subsequence = my_list[2:7] 
print(subsequence)  # [3, 4, 5, 6, 7] 
 
reverse = my_list[::-1] 
print(reverse)  # [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] 
 
first_five_reversed = my_list[4::-1] 
print(first_five_reversed)  # [5, 4, 3, 2, 1] 
 
last_five_reversed = my_list[:-6:-1] 
print(last_five_reversed)  # [10, 9, 8, 7, 6] 
 
shallow_copy = my_list[:] 
print(shallow_copy == my_list)  # True 
print(shallow_copy is my_list)  # False 
 
# This throws no exception! 
print(my_list[-5000:5000:-300])  # []
 

Finally, it is possible to create reusable slice objects using the slice()
function in Python:
slice_obj = slice(1, None, 2)  # 1::2 
 
list_1 = [1, 2, 3, 4, 5] 
list_2 = [10, 11] 
 
print(list_1[slice_obj])  # [2, 4] 
print(list_2[slice_obj])  # [11]
 

6.2 Tuples



In Python, a tuple is an ordered collection of elements, similar to a list.
However, tuples are immutable, meaning their elements cannot be modified
after creation.

Most list operations also work for tuples in a similar manner.
my_tuple = (1, 2, 3, 4, 5) 
 
print(my_tuple[1])  # 2 
print(my_tuple[-2])  # 4 
 
print(my_tuple[1:4])  # (2, 3, 4) 
 
new_tuple = my_tuple + (6, 7, 8) 
print(new_tuple)  # (1, 2, 3, 4, 5, 6, 7, 8) 
 
repeated_tuple = (1, 2, 3) * 2 
print(repeated_tuple)  # (1, 2, 3, 1, 2, 3) 
 
print(my_tuple.count(3))  # 1 
print(my_tuple.index(4))  # 3 
 
a, b, c, d, e = my_tuple 
print(a, b, c, d, e)  # Output: 1 2 3 4 5
 

Additionally, it is possible to omit parentheses for tuple creation in
assignment and return statements:
def func(x, y, z): 
    return x, y, z 
 
 
a = 1, 2, 3 
b = func(4, 5, 6) 
 
print(a)  # (1, 2, 3) 
print(b)  # (4, 5, 6)
 

As tuples are immutable, they do not have a sort() method like lists do.
Instead, the sorted() function can be used to sort both lists and tuples. This
function returns a new list with sorted items, without modifying the original
sequence.



my_tuple = (3, 1, 2) 
sorted_list = sorted(my_tuple) 
sorted_tuple = tuple(sorted_list) 
 
print(my_tuple)  # (3, 1, 2) 
print(sorted_list)  # [1, 2, 3] 
print(sorted_tuple)  # (1, 2, 3)
 

Lastly, creating a tuple that consists of only one element requires an
additional comma at the end to avoid ambiguity with a scalar value.
a = (1) 
b = (1,) 
 
print(a)  # 1 
print(b)  # (1,)
 

For the same reason, you have to use the tuple constructor if you want to
use comprehension for tuples:
no_tuple = (i for i in range(5)) 
print(no_tuple)  # <generator object <genexpr> ... 
 
my_tuple = tuple(i for i in range(5)) 
print(my_tuple)  # (0, 1, 2, 3, 4)
 

6.3 Tuple Operations on Strings

Many operations that can be performed on tuples in Python can also be
applied to strings. This is because both tuples and strings are immutable
sequences, which means they share a variety of common behaviors and
methods.

Here are some examples:
string = "xzaA" 
 
print(string[-1])  # A 
print(string[1:3])  # za 
 
print(string.index("a"))  # 2 
 



print(list(string))  # [’x’, ’z’, ’a’, ’A’] 
print(3 * string)  # xzaAxzaAxzaA 
 
sorted_list = sorted(string) 
sorted_string = "-".join(sorted_list) 
 
print(sorted_list)  # [’A’, ’a’, ’x’, ’z’] 
print(sorted_string)  # A-a-x-z
 

6.4 Dictionaries

Dictionaries in Python serve as counterparts to maps in Java.

Like Java maps, dictionaries are unordered collections of items where each
item is stored as a key-value pair.

They are mutable, allowing their elements to be modified after creation.
Keys within a dictionary are unique, while values can be duplicated.

Dictionaries in Python are defined using braces {} and contain key-value
pairs separated by a colon (:).

Unlike Java, both keys and values in a Python dictionary can have different
data types.
name_of_locations = { 
 
    "home": "New York", 
 
    ("N35.6895", "E139.6917"): "Tokyo" 
}
 

This code sample demonstrates various dictionary operations and methods:
# Creating a dictionary 
my_dict = {"name": "John", "age": 30 } 
 
# Accessing elements of the dictionary 
print(my_dict["name"])  # John 
 
# Adding a new key-value pair 
my_dict["email"] = "john@example.com" 



 
# Modifying a value 
my_dict["age"] = 31 
 
# Removing a key-value pair 
my_dict["city"] = "New York" 
del my_dict["city"] 
 
# Iterating over the dictionary 
for key, value in my_dict.items(): 
    print(key, ":", value) 
# name : John 
# age : 31 
# email : john@example.com 
 
# Check if a key exists in a dictionary 
print("name" in my_dict)  # True 
print("city" not in my_dict)  # True 
 
# Comprehension: Create a dictionary 
# mapping numbers to their cubes 
# and filter even numbers 
even_cubes = {x: x*x*x for x in range(1, 10) 
              if x % 2 == 0} 
 
print(even_cubes)  # {2: 8, 4: 64, 6: 216, 8: 512}
 

Finally, there is also a feature called dictionary packing/unpacking, which
transforms a list of function parameters into a dictionary and vice versa.
# dictionary unpacking 
def func_1(a=0, b=0, c=0, d=0): 
    print(a, b, c, d) 
 
 
my_dict = {"c": 3, "a": 1} 
func_1(**my_dict)  # 1 0 3 0 
 
 
# dictionary packing 
def func_2(**args): 
    print(args) 
 
 
func_2(x=1, y=2)  # {’x’: 1, ’y’: 2}
 



Notice that when a function uses dictionary packing and is called without
any parameters, it is automatically interpreted within the function’s scope as
a call with an empty dictionary {}.
def func(**args): 
    print(args) 
 
 
func(x=1, y=2)  # {’x’: 1, ’y’: 2} 
func()  # {}
 

Using dictionary packing in combination with a variable argument list, it is
possible to define a highly flexible signature for a function or method:

(*args, **kwargs)

This signature allows for an arbitrary list of positional parameters and an
arbitrary set of key-value pairs, providing a universal interface for accepting
various types of input.
def func(*args, **kwargs): 
    print(args, kwargs) 
 
 
func() 
# () {} 
 
func(42, "hello") 
# (42, ’hello’) {} 
 
func(msg="hello", code=42) 
# () {’msg’: ’hello’, ’code’: 42} 
 
func(42, msg="hello") 
# (42,) {’msg’: ’hello’}
 

6.5 Sets

In Python, similar to Java, sets are unordered and mutable collections of
unique elements.



They are defined using braces {} that contain a list of elements. In contrast
to Java, elements of a set in Python can be of different types.
set_1 = {42, 4.9, "Hello"} 
print(set_1)  # {42, 4.9, ’Hello’} 
 
# Duplicated elements are eliminated 
set_2 = {1, 1, 2} 
print(set_2)  # {1, 2}
 

The main operators for sets in Python include:

Union (|): Combines two sets, returning a new set with all unique elements
from both sets.

Intersection (&): Finds the common elements between two sets, returning a
new set.

Difference (-): Finds the elements that are only in the first set and not in
the second set, returning a new set.

Symmetric Difference (^): Finds the elements that are present in only one
of the sets, but not in both, returning a new set.

Membership (in): Checks if an element is present in the set.

Subset (<=), Superset (>=): Checks if a set is a subset / superset of another
set.

Here are some examples for using these operators.
set_1 = {1, 2, 3, 4} 
set_2 = {3, 4, 5, 6} 
 
set_1.add(10) 
print(set_1)  # {1, 2, 3, 4, 10} 
set_1.remove(10) 
print(set_1)  # {1, 2, 3, 4} 
 
union_set = set_1 | set_2 
print(union_set)  # {1, 2, 3, 4, 5, 6} 
 
intersection_set = set_1 & set_2 



print(intersection_set)  # {3, 4} 
 
difference_set = set_1 - set_2 
print(difference_set)  # {1, 2} 
 
sym_difference_set = set_1 ^ set_2 
print(sym_difference_set)  # {1, 2, 5, 6} 
 
print(3 in set_1)  # True 
 
subset_check = {1, 2} <= set_1 
print(subset_check)  # True 
 
superset_check = set_1 >= {1, 2} 
print(superset_check)  # True
 

If necessary, you can create an immutable set using the frozenset()
function, which converts a normal (mutable) set into an immutable set,
preventing any further modifications.
my_set = {1, 2, 3, 4} 
frozen_set = frozenset(my_set) 
 
# This statement raises an AttributeError 
frozen_set.add(5)
 

6.6 Equality

In Python, equality for lists, tuples, dictionaries, and sets is based on their
contents:

Lists and tuples are considered equal if they contain the same elements
in the same order.
Dictionaries are considered equal if they have the same key-value
pairs.
Sets are considered equal if they contain the same elements.

The elements are compared using the == operator to determine if they are
equal.

6.7 Iterators and Generator Functions



In Python, an iterator is an object that implements two methods:

__next__(): This method returns the next item in the stream of data. If
there are no more items, it raises a StopIteration exception (Exceptions
will be explained in Chapter 7: Exceptions.).

__iter__(): This method returns the iterator object itself. It enables an
iterator to be used in a context where an iterable is expected, such as in a
for loop.

Lists, tuples, dictionaries, and sets in Python implement only the
__iter__() method, which is responsible for creating an iterator when
called. These objects do not implement the __next__() method directly.

Instead, Python’s for loops use the iter() function (which calls the
object’s __iter__() method) to obtain an iterator, and then repeatedly call
next() on the iterator to fetch elements sequentially.

Conversely, functions like list(), tuple(), dict(), and set() convert
iterators into their corresponding data structures. Here is an example for all
this:
class MyIterator: 
    def __init__(self, limit): 
        self.limit = limit 
        self.current = 0 
 
    def __iter__(self): 
        return self 
 
    def __next__(self): 
        if self.current < self.limit: 
            self.current += 1 
            return self.current 
        else: 
            raise StopIteration 
 
 
for x in MyIterator(4):  # 1 2 3 4 
    print(x) 
 
my_list = list(MyIterator(4)) 
print(my_list)  # [1, 2, 3, 4] 



 
my_tuple = tuple(MyIterator(4)) 
print(my_tuple)  # (1, 2, 3, 4) 
 
my_set = set(MyIterator(4)) 
print(my_set)  # {1, 2, 3, 4} 
 
# You have to use enumerate for dict() 
my_dict = dict(enumerate(MyIterator(4))) 
print(my_dict)  # {0: 1, 1: 2, 2: 3, 3: 4}
 

Note that there is an alternative way to define iterators in Python by using a
construct called a generator function.

Generator functions are regular functions that use a yield statement to
provide the next element in the sequence.
def my_iterator(limit): 
    for i in range(1, limit+1): 
        yield i 
 
 
for x in my_iterator(4):  # 1 2 3 4 
    print(x) 
 
print(list(my_iterator(4)))  # [1, 2, 3, 4]
 

Generator functions automatically manage their state between yield
statements, enabling them to resume execution from where they left off.
This simplifies the implementation of complex iteration logic.

6.8 Context Managers

Context managers in Python streamline resource management and
controlled setup and cleanup actions. They are typically used with the with
statement, which is similar to Java’s try-with-resources statement.

Here is an example:
with open("example.txt", "r") as file: 
    data = file.read()
 



In this example, the open function returns a context manager that manages
the file resource (File handling will be discussed in Chapter 8: Basic File
Handling). The with statement ensures that the file is properly opened and
closed, even if an exception occurs while reading the file.

You can create a custom context manager by defining __enter__ and
__exit__ methods in a class.

Here is an example:
class MyContextManager: 
 
    def __enter__(self): 
        print("__aenter__ called") 
        self.data = [1, 2, 3, 4, 5] 
        return self 
 
    def __exit__(self, exc_type, exc_value, 
                 traceback): 
        print("__aexit__ called") 
        del self.data 
 
 
with MyContextManager() as manager: 
    print(manager.data) 
 
# __aenter__ called 
# [1, 2, 3, 4, 5] 
# __aexit__ called
 

The __enter__ method of a context manager is responsible for setting up
the context and returning the object that will be used within the with
statement block.

It is called automatically when entering the with block.

The __exit__ method of a context manager is responsible for performing
cleanup actions and handling any exceptions that occur within the context
managed by the with statement.

It is called automatically when exiting the with block, whether due to
normal execution or an exception.



In case an exception (Exceptions will be discussed in Chapter 7:
Exceptions.) occurs during the execution of the with block, the exc_type,
exc_value, and traceback parameters hold the class of the exception, the
exception itself, and the exception’s traceback attribute, respectively.

All parameters will be None if no exception occurred.



Chapter 7
Exceptions

Exception creation and handling share common concepts in both Python
and Java, such as try-except blocks and exception classes.
In this chapter, we will explore these similarities and differences in more
detail.

7.1 Standard Exceptions

Python comes with a variety of built-in exceptions that cover common error
cases. Some of the commonly used standard exceptions include:

TypeError: Raised when an operation or function is applied to an object of
inappropriate type.

ValueError: Raised when an operation or function receives a correct type
but an inappropriate value.

ZeroDivisionError: Raised when the second operand of a division or
modulo operation is zero.

IndexError: Raised when a sequence index is out of range.

KeyError: Raised when a dictionary key is not found.

FileNotFoundError: Raised when a file or directory is requested but
cannot be found.

AttributeError: Raised when attempting to access an attribute or method
that doesn’t exist or is not accessible within the context of the object.

These exceptions are raised by Python’s built-in functions, but they can also
be raised by custom code.
def divide(x, y): 
    if y == 0: 
        raise ValueError("Zero Divisor") 



    return x / y
 

In Python, most built-in exceptions inherit from the Exception class, which
itself inherits from the BaseException class. The BaseException class has
several standard attributes. Here are a few important ones:

args: This attribute is set automatically when an exception object is
created. It contains a tuple of arguments passed to the exception constructor.

Typically, the args tuple contains one or more values that provide
additional information about the exception. These values are often
descriptive messages or data relevant to the specific error condition that
caused the exception to be raised.

For example, when raising a ValueError, the args tuple may contain a
message indicating why the value is considered invalid.

This is equivalent to the message string that can be passed as a parameter to
the constructor of a Java exception.

__traceback__: This attribute is set automatically by the Python interpreter
when an exception occurs. It contains the traceback associated with the
exception.

A traceback in Python is similar to Java’s stack trace. Both provide
information about the sequence of function calls that led to the occurrence
of an exception. It is a detailed report of the function calls, including file
names, line numbers, and function names, leading up to the exception.

The traceback is printed to the console by default when an unhandled
exception occurs. Explaining the details of the structure of a traceback is
beyond the scope of this book.

__context__: This attribute is automatically set by the Python interpreter
when an exception occurs within the context of handling another exception.
It typically contains the exception object that was being handled when the
current exception occurred.



An example of such a situation is when an exception is raised within an
except block of a try - except statement that handles a different exception.

__cause__: This attribute is typically set programatically using the from
keyword in the raise statement, as will be explained below.

7.2 Exception Handling

While the syntax for exception handling may differ between Java and
Python, the underlying principles are similar. Exceptions propagate up the
call stack until they are caught by an appropriate try - except block or
propagate to the top level of the program, resulting in program termination.

However, a significant difference is that Python does not have the concept
of checked exceptions like Java. In Python, all exceptions are considered
unchecked, meaning you are not required to declare them in the method
signature.

Here is a complete example.
def divide_numbers(x, y): 
    try: 
        result = x / y 
    except ZeroDivisionError: 
        print("Zero Division") 
    except Exception as e: 
        # All other exceptions, 
        # ’as’ is optional and ties the exception 
        # to a variable 
        print("Exception:", e) 
    else: 
        # Executed, if no error occurs 
        print("Result:", result) 
    finally: 
        # Always executed 
        print("Finished") 
 
 
divide_numbers(10, 2) 
# Result: 5.0 
# Finished 
 
divide_numbers(10, 0) 



# Zero Division 
# Finished 
 
divide_numbers(10, "2") 
# Exception: unsupported operand type(s) for /: ... 
# Finished
 

7.3 Exception Chains

Exception chains, also known as exception nesting or chaining, refer to the
concept of one exception being associated with another as its cause.

This typically occurs when an exception is raised within the handling of
another exception.

As mentioned earlier, Python automatically sets the __context__ attribute
of an exception when it occurs within the context of handling another
exception.

Additionally, you can explicitly establish a cause-and-effect relationship
between exceptions using the raise ... from ... statement, which sets
the __cause__ attribute of the raised exception.
def divide(x, y): 
    try: 
        return x / y 
    except ZeroDivisionError: 
        divisor_ex = ValueError("Divisor is zero.") 
        cause = AttributeError("x={x}, y={y}") 
        raise divisor_ex from cause 
 
 
try: 
    divide(1, 0) 
 
except Exception as ex: 
    print(f"ex: {type(ex)}") 
    print(f"__cause__: {type(ex.__cause__)}") 
    print(f"__context__: {type(ex.__context__)}") 
 
# ex: <class ’ValueError’> 
# __cause__: <class ’AttributeError’> 



# __context__: <class ’ZeroDivisionError’>
 

7.4 Custom Exceptions

In Python, similar to Java, you can create custom exceptions by inheriting
from the Exception class.
class CustomError(Exception): 
    def __init__(self, message): 
        super().__init__(message) 
        self.error_code = 500 
 
 
def failing_operation(): 
    raise CustomError("Function failed.") 
 
 
try: 
    failing_operation() 
except CustomError as e: 
    print(e)  # Function failed. 
    print(e.error_code)  # 500
 

In contrast to Java, where the constructor of the Exception class typically
accepts standard arguments like message or stack trace, the constructor of
the base Exception class in Python only accepts a variable argument list
(*args) and does not define standard arguments like message or stack trace
explicitly.

These exceptions can then be accessed later through the args attribute of
the raised exception.

Custom exceptions should be derived from Exception rather than its base
class, BaseException. From the BaseException class exceptions such as
SystemExit and KeyboardInterrupt are inherited which are typically
reserved for system-level exceptions.



Chapter 8
Basic File Handling

This chapter covers fundamental file operations like opening, reading, and
writing files, as well as exception handling during file operations.

8.1 Opening and Closing Files

Opening and closing a file in Python is similar to Java.

To open a file, you use the open() function. Once you’re done working with
the file, it’s essential to close it using the close() method to release system
resources.
file = open("example.txt", "r") 
data = file.read() 
# Close the file 
file.close()
 

The first parameter in the open function specifies the file path. In this
example, it is relative to the current working directory, where the Python
script is executed.

Absolute paths are also possible by providing the complete path to the file.
However, absolute paths may require platform-specific formatting
depending on the operating system used.

This formatting typically involves specifying the path separators correctly
for the operating system in use, but it is not directly handled by Python’s
core functionality.

The second parameter in the open function is the mode parameter. It
determines how you want to access the file.

Some common options are read (r), write (w), append (a), binary (b), and
text (t). Combinations like rb for reading a binary file are possible as well.



In Python, you can use the with statement to automatically handle the
opening and closing of files. This is similar to the try-with-resources
statement in Java. The with statement ensures that the file is properly
closed after its suite finishes, even if an exception is raised during the
execution of the code block.
with open("example.txt", "r") as file: 
    data = file.read() 
    print(data)
 

8.2 Reading from Files

Reading from files in Python is as straightforward as in Java, and there are
multiple methods to achieve it:

Using the read method, a file can be read either completely or in chunks,
which is the preferred method for binary files, as in Java.
with open("example.txt", "r") as file: 
    contents = file.read() 
# Process the contents 
 
chunk_size = 1024  # Read 1 KB at a time 
with open("example.bin", "rb") as file: 
    while True: 
        chunk = file.read(chunk_size) 
        if not chunk: 
            break 
        # Process the chunk of data
 

For text files, readline() and readlines() can be used.
with open("example.txt", "r") as file: 
    lines = file.readlines() 
# Process the list of lines 
 
with open("example.txt", "r") as file: 
    while True: 
        line = file.readline() 
        if not line: 
            break 
        # Process the current line
 



Finally, Python file objects can be used as iterators to iterate over lines in a
file directly within a loop.
with open("filename.txt", "r") as file: 
    for line in file: 
        # Process the current line
 

8.3 Writing to Files

The write() method allows you to write data directly to a file. You can use
it to write strings and bytes. Any other data types must be converted before
writing.

The file must have been opened in write mode (w) if you want to create or
overwrite a file or in append mode (a) if you want to add data to an existing
file without overwriting its content.
# Writing strings to a text file 
with open("example.txt", "w") as file: 
    file.write("Hello, World!\n") 
    file.write("This is a sample text.\n") 
 
# Appending text to a text file 
with open("example.txt", "a") as file: 
    file.write("Appended line.\n") 
 
# Writing binary data 
data = b"\x48\x65\x6c\x6c\x6f" 
with open("example.bin", "wb") as file: 
    file.write(data)
 

The writelines() method is used to write a sequence of strings to a file.

Each string in the sequence is written to the file without adding any line
separators, which must be added manually if needed.
lines = ["Line 1\n", "Line 2\n", "Line 3\n"] 
 
with open("example.txt", "w") as file: 
    file.writelines(lines)
 



8.4 Exception Handling

When reading or writing to a file in Python, some frequent exceptions are:

FileNotFoundError: Accessing a file that does not exist.

PermissionError: File operation without necessary permissions.

IOError: General exception for I/O-related errors.
try: 
    with open("example.txt", "r") as file: 
        content = file.read() 
except FileNotFoundError: 
    print("File not found!") 
except PermissionError: 
    print("Permission denied!") 
except IOError: 
    print("An I/O error occurred!")
 



Chapter 9
Functional Programming

In this chapter, we will explore functional programming in Python, covering
its features, syntax, and applications.
While Python’s support resembles Java, including higher-order functions,
lambda expressions, and closures, Python’s dynamic nature presents unique
opportunities, as we will see.

9.1 First-Class Functions

In Python, functions can be treated just like any other data type, such as
integers or strings. The following examples illustrate the main aspects of
this feature.

Functions can be assigned to variables.
def greet(name): 
    return f"Hi {name}!" 
 
 
greet_function = greet 
print(greet_function("Alice"))  # Hi Alice!
 

Functions can be passed as arguments to other functions.
def apply_operation(operation, x, y): 
    return operation(x, y) 
 
 
def multiply(x, y): 
    return x * y 
 
 
result = apply_operation(multiply, 3, 4) 
print(result)  # 12
 

Functions can be returned as values from other functions.
def create_multiplier(factor): 
    def multiplier(x): 



        return x * factor 
 
    return multiplier 
 
 
triple = create_multiplier(3) 
print(triple(5))  # 15
 

In Python, it is possible to pass a method of an object to a function as a
parameter.

While this shares some similarities with method references in Java (denoted
by the :: operator), the syntax and implementation are different.
class MyClass: 
    def __init__(self, value): 
        self.value = value 
 
    def multiply(self, other): 
        return self.value * other 
 
 
def use(function, obj): 
    return function(obj) 
 
 
my_object = MyClass(2) 
 
result = use(my_object.multiply, 5) 
print(result)  # 10
 

9.2 Lambda Expressions

In both Java and Python, lambda expressions are anonymous functions that
can be used to create small, one-off functions without needing to explicitly
define a separate function.

Lambda expressions in Python are defined using the keyword lambda,
followed by a list of parameters separated by commas, a colon (:), and an
expression that represents the return value of the function call.



Unlike Java, Python’s dynamically typed nature means that you don’t need
to specify parameter types in lambda functions.
add = lambda x, y: x + y 
 
print(add(3, 5))  # 8
 

Python lambdas can access variables from their enclosing lexical scope,
creating closures that retain access to these variables even after the
enclosing scope exits, unlike Java where final or immutable declarations are
necessary.
def create_list_appender(x): 
    return lambda y: x.append(y) 
 
 
my_list = [1, 2] 
add_to_my_list = create_list_appender(my_list) 
 
add_to_my_list(3) 
print(my_list)  # [1, 2, 3]
 

9.3 Built-in Higher-Order Functions

Lambda expressions are particularly handy with Python’s built-in higher-
order functions.

Here are examples showcasing map() and filter(). Note that in Python,
they return iterators, unlike their Java counterparts.
numbers = [1, 2, 3, 4, 5] 
 
squared = map(lambda x: x ** 2, numbers) 
print(list(squared))  # [1, 4, 9, 16, 25] 
 
evens = filter(lambda x: x % 2 == 0, numbers) 
print(list(evens))  # [2, 4]
 



Part III
Managing Python Environments



Chapter 10
Modules and Packages

10.1 Overview

In Python, similar to Java, code is structured into a tree format of directories
and code files, establishing a hierarchical namespace for accessing
variables, functions, and classes within the code files. However, there are
notable distinctions, as we will explore in this chapter.

Consider the following file tree example:

src/
|- main.py
|- utils/
| |- __init__.py
| |- helper.py
|- data/
| |- __init__.py
| |- data_processing.py.

This file tree contains examples of the following elements:

Scripts like main.py typically refer to standalone Python files that contains
executable code meant to be run directly. They are the entry points to
applications or workflows.

In a typical Python project structure, scripts are often either located at the
top level of a project directory or in a directory named scripts or bin
directly below the top level.

This separation helps to distinguish scripts, which are meant to be directly
executable, from modules.

Modules like helper.py are Python files that contain reusable code,
including variables, functions, and classes.

Each module can be imported and used in other modules or scripts.



Packages like utils are directories that contain Python modules and a
special file named __init__.py. They provide a way to organize and
namespace related modules.

The file names of modules must must end with the .py extension.
Technically you can name your Python scripts without the .py extension,
but doing so is not standard practice and may lead to confusion for other
developers.

In Python, similar to Java, namespaces are hierarchical, consisting of
modules and packages. When importing modules from packages, the dot
notation is used to traverse the namespace hierarchy. For example, in the
scenario described above, the helper.py module is referenced as
utils.helper in an import statement.

In Python, there is no package statement; a module’s package is solely
determined by its position within the package hierarchy.

Therefore, in Python, unlike Java, two classes cannot share the same
namespace if they are in different files. They must be in the same module
file. For instance, both utils.helper.class_1 and utils.helper.class_2
need to be defined within the same module file, named helper.py.

10.2 Packages

In Python, there are regular packages and namespace packages. Regular
packages have been available since both Python 2 and 3, while namespace
packages are a feature introduced in version 3.3.

It is possible to use regular packages and namespace packages in parallel
within a Python project.

Regular packages are directories that contain a file __init__.py. This file
is executed when the corresponding package or parts of it are imported.

The __init__.py file can contain initialization code, such as defining
variables, importing modules, or setting up resources needed by the
package. Alternatively, it can be left empty.



It is executed only once per Python process, regardless of how many times
the package is imported by different modules. Once it is executed, the
module is cached in memory, and subsequent imports of the same package
will reuse the already initialized module.

Namespace packages in Python enable multiple directories, ZIP files, or
other file systems to collectively behave as a single Python package.

This feature is particularly useful for structuring large libraries or projects
that may need to be distributed across different locations.

All package sources must not contain a __init__.py.

Python combines the contents of all directories or archives found within a
single namespace, akin to Java packages.

It is possible to have namespace subpackages of regular packages and vice
versa.

In contrast to Java Python does not throw an exception if a regular package
exists twice or a namespace package finds the same module name in two
different sources.

Instead it uses the first package or module it finds, ignoring other possible
findings. As this can lead to an unexpected behaviour of the Python
application, such situations should be avoided.

Similar to source sets in the Gradle build process, Python projects in IntelliJ
IDEA can organize source code into different directories.

IntelliJ IDEA provides a project configuration feature where directories can
be designated for different purposes.

This can be done by using the Mark directory as option in the context
menu, accessed by right-clicking on a directory name in the project
window.

Alternatively, you can navigate to File →Project Structure →Project
Settings →Modules →Sources to configure directories.



The two most important markings are:

Sources Root: Indicates that all directories within it are considered top-
level packages, and all Python files contained in this directory are
considered part of the root package.

Excluded: Indicates that the files and directories in this package should be
ignored when building and running the project.

The example below illustrates a directory structure with markings (S =
Sources Root, E = Excluded) for a project that includes a legacy section
utilizing regular packages and a newer section employing namespace
packages, suitable for execution on two distinct operating system platforms.

With this configuration the project is ready to run on platform A using the
packages

my_legacy_common_package
my_legacy_platform_package
my_package

To make the project ready to run on Platform B, you simply need to swap
the Source Root and Excluded markings on the platform packages.

Notice that the src directory needs no marking to run the entry point
main.py as this file is directly passed to the Python interpreter.

This example also illustrates the advantage of namespace packages. Both
platform-dependent and platform-independent code can reside in the same
namespace package, my_package. The legacy code requires two separate
regular packages, my_legacy_common_package and
my_legacy_platform_package

src/
|- main.py
|- legacy/
| |- common (S)/
| | |- my_legacy_common_package/
| | | |- my_common_module.py
| | | |- __init__.py/
| |- platform_A (S)/



| | |- my_legacy_platform_package/
| | | |- my_platform_module.py
| | | |- __init__.py/
| |- platform_B (E)/
| | |- my_legacy_platform_package/
| | | |- my_platform_module.py
| | | |- __init__.py/
|- non_legacy/
| |- common (S)/
| | |- my_package/
| | | |- my_common_module.py
| |- platform_A (S)/
| | |- my_package/
| | | |- my_platform_module.py
| |- platform_B (E)/
| | |- my_package/
| | | |- my_platform_module.py.

Finally, for your reference, marking directories as source roots
automatically adds them to the PYTHONPATH variable, which is a list of
directories that the Python interpreter traverses when searching for modules
or packages, similar to Java’s classpath.

10.3 Importing Modules

Python supports various types of imports from modules, each serving
specific purposes:

Importing Entire Modules: The most common type of import, where an
entire module is imported using the import keyword. This makes all names
defined in the module accessible via the module’s namespace.

Importing Specific Items: Using the from keyword allows for the direct
import of specific items into the current namespace. This facilitates
selective access to only the necessary components, eliminating the need to
prefix them with the module name. This practice enhances code readability
and reduces namespace clutter.

Renaming Imported Items: With the as keyword, it is possible to rename
imported items to avoid naming conflicts or provide more descriptive
names.



Wildcard Imports: While Python supports wildcard imports to import all
names from a module, it is generally discouraged due to potential
namespace pollution and readability issues.

In the following sections, each type of import will be explained in detail.
All example code will be based on the following module whose name is
my_module and whose package is my_package.
# my_package/my_module 
 
class MyClass: 
    def __init__(self, name): 
        self.name = name 
 
    def greet(self): 
        return f"Hello, {self.name}!" 
 
 
def my_function(): 
    return "Hello from my_module." 
 
 
my_variable = "Hello, World!"
 

In Python, when you import from a package instead of a module, the
objects are imported from the package’s __init__.py file.

So the imports described in the following would also work with imports
from my_package instead of my_package.my_module if the code above were
to reside in the __init__.py file of my_package.

An example demonstrating the rationale behind this approach is provided at
the end of the chapter.

10.3.1 Importing Entire Modules

You can import an entire module using the import keyword followed by the
package and module name.

Once imported, you can access the contents of the module using dot
notation.



import my_package.my_module 
 
print(my_package.my_module.my_variable) 
print(my_package.my_module.my_function()) 
obj = my_package.my_module.MyClass("Bob") 
print(obj.greet()) 
 
# Hello, World! 
# Hello from my_module. 
# Hello, Bob!
 

10.3.2 Importing Specific Items

You can import specific items such as classes, functions, or variables from a
module using the from keyword followed by the module name and import
statement for the specific item(s) you want to import.

Once imported, you can directly reference the imported items without
prefixing them with the module name.
from my_package.my_module import \ 
    my_variable, my_function, MyClass 
 
print(my_variable) 
print(my_function()) 
obj = MyClass("Charlie") 
print(obj.greet()) 
 
# Hello, World! 
# Hello from my_module. 
# Hello, Charlie!
 

10.3.3 Renaming Imported Items

When importing items from a module, you can rename them using the as
keyword followed by the desired alias. This allows for better code
readability or resolving naming conflicts.
from my_package.my_module import \ 
    my_variable as renamed_variable, \ 
    my_function as renamed_function, \ 
    MyClass as RenamedClass 



 
print(renamed_variable) 
print(renamed_function()) 
obj = RenamedClass("Louis") 
print(obj.greet()) 
 
# Hello, World! 
# Hello from my_module. 
# Hello, Louis!
 

10.3.4 Wildcard Imports

Wildcard imports, also known as star imports, allow importing all items
from a module into the current namespace using the * symbol.
from my_package.my_module import * 
 
print(my_variable) 
print(my_function()) 
 
obj = MyClass("Lucy") 
print(obj.greet()) 
 
# Hello, World! 
# Hello from my_module. 
# Hello, Lucy!
 

While convenient, wildcard imports can lead to namespace pollution and
make it unclear which symbols are being imported, potentially causing
conflicts or ambiguities in the code.

It is possible to restrict wildcard imports from a module by assigning the
__all__ variable with a list of items that will be imported using wildcards.

For example, placing

__all__ = ["MyClass"]

at the end of my_package.my_module would prevent my_variable and
my_function from being imported with a wildcard.



However, these items would still be importable using other types of
imports.

PEP 8, the official style guide for Python code, discourages the use of
wildcard imports:

Wildcard imports (from <module> import *) should be avoided, as they
make it unclear which names are present in the namespace, confusing both
readers and many automated tools.

10.4 Absolute vs Relative Imports

In Python, imports can be categorized into two types: absolute imports and
relative imports.

Absolute imports specify the exact location of the module or package to
import, starting from the top-level package. This type of import is similar to
Java’s import statements and provides a full path from the project’s root
directory to the target module or package.

Relative imports specify the location of the module or package relative to
the current module. This type of import is useful when importing modules
or packages within the same project or package hierarchy.

When using relative imports in Python, you can specify the number of
levels up in the package hierarchy to traverse by prefixing the import path
with one or more dots (.).

Each dot represents one level up in the hierarchy. For example, to import a
module from the parent package, you use a single dot (.); to import from
the grandparent package, you use two dots (..), and so on.

As an example, consider this project structure:

src/
|- main.py
|- package/
| |- module
| |- second_module



| |- sub_package/
| | |- sub_module.py
| | |- sub_sub_package/
| | | |- sub_sub_module.py
| |- other_sub_package/
| | |- other_module.

If main.py wants to import a function from sub_module.py, it must use an
absolute import because scripts are not part of any package and therefore
cannot use relative imports.
# main.py 
 
from package.sub_package.sub_module\ 
    import my_function
 

If second_module wants to import a function from the module, it can use a
relative import using a single . to indicate that the module is located in the
same package.
# second_module 
 
from .module import my_function
 

If sub_sub_module.py wants to import functions from sub_module.py and
other_module.py, it can do so by using .. and ... as prefixes,
respectively.
# sub_sub_module 
 
from ..sub_module \ 
    import my_function as func_1 
 
from ...other_sub_package.other_module \ 
    import my_function as func_2
 

After discussing relative imports here, it is important to note that according
to PEP 8, the Python style guide, absolute imports are generally
recommended over relative imports. PEP 8 states:

Absolute imports are recommended, as they are usually more readable and
tend to be better behaved (or at least give better error messages) if the



import system is incorrectly configured.

10.5 Package Interfaces

In Python, placing import statements within an __init__.py file or a
module of a package makes those imports directly accessible for use in
other modules or packages.

This behavior allows packages to provide a convenient interface for users to
access commonly used objects directly from the package namespace.

For example, consider a package named mypackage with the following
structure:

my_package/
|- __init__.py
|- my_module_1.py
|- my_module_2.py.

If my_module_1.py contains a function my_function, and my_module_2.py
contains a class named MyClass, you can import these objects in
__init__.py:
# __init.py__ 
 
from my_module_1 import my_function 
from my_module_2 import MyClass
 

That way every script can directly import these items directly from the
package:
from mypackage import my_function, MyClass
 

This allows for a cleaner and more intuitive API for users of the package, as
they can access the objects they need directly from the package namespace.

10.6 The __name__ Attribute in Python Modules



In Python, there is a special built-in attribute called__name__ that is
automatically defined for every module and script (Please notice: The name
attribute discussed here, should not be confused with __name__ when
referring to class objects in Python. The former pertains to module-level
metadata, while the latter typically refers to the name of the class itself
within the context of object-oriented programming.). It serves a crucial role
in distinguishing between whether a module is being run as the main
program or imported as a module into another program.

Main Program Execution: When a Python script is executed directly using
python script.py, the __name__ attribute for that script is set to
"__main__".

Module Import: When a Python script is imported as a module into a
script or another module, its __name__ attribute is set to the module’s name.

The __name__ attribute is commonly used in Python to control the
execution of code based on whether the module is run as the main program
or imported as a module.

Here is a simple example to illustrate its use:
# my_module.py 
 
def script(): 
    print("Running as script.") 
 
 
def imported(): 
    print(f"Module {__name__} imported.") 
 
 
if __name__ == "__main__": 
    script() 
else: 
    imported()
 

Running my_module.py directly would output

Running as script



whereas importing my_module.py elsewhere would output

Module my_module imported.



Chapter 11
Python Environments

11.1 Introduction to Python Environments

A Python environment, much like a Java Development Kit (JDK),
encompasses the collection of resources and settings required for executing
Python code and running Python-based applications.

It includes essential components such as the Python interpreter, libraries,
dependencies, configuration settings, and runtime environment.

In summary, a Python environment provides the necessary infrastructure for
creating, executing, and managing Python programs effectively.

There are two types of environments:

System-wide Environment: This is the default environment active when
you run the Python interpreter in a newly created shell.

Virtual Environments: These provide a sandboxed environment where
project-specific dependencies can be installed and managed independently
of other Python projects. They can be activated either manually or
automatically, for example, from your IDE when you open a project.

When you activate a virtual environment, any subsequent Python
commands or scripts executed in the shell will use the Python interpreter
and libraries associated with the activated virtual environment.

Conversely, deactivating a virtual environment restores the shell
environment to its previous state, reverting to the system-wide Python
interpreter and installed packages.

Virtual environments are typically created within a directory containing a
specific structure that includes a separate Python interpreter and a set of
directories for package installations and other resources.



Each virtual environment contains its own copy of the Python interpreter
executable. This ensures that when the virtual environment is activated, it
uses its own interpreter rather than the system-wide one.

Additionally, virtual environments include their own directories for
installing Python libraries and packages. When you install a package within
a virtual environment using pip or another package manager, the packages
are installed into this isolated directory structure, separate from other
environments.

Installation of packages and managing dependencies will be covered in the
following chapter.

Virtual environments provide activation and deactivation scripts that
modify the shell environment to use the virtual environment’s Python
interpreter and modify the shell’s PATH variable to prioritize the virtual
environment’s binary directory for package execution. This allows you to
switch between virtual environments seamlessly within a shell session.

Virtual environments are not inherently tied to a specific project.

While it is common practice to create a virtual environment for each project
to manage project-specific dependencies, technically, the same virtual
environment can be used across different projects.

11.2 Managing Virtual Environments

11.2.1 Available Tools

For creating and activating virtual environments in Python, several tools are
available, each with its own advantages:

venv: This is the standard tool provided by Python itself. You can create a
virtual environment using Python scripts from the venv module, which is
included with Python by default.

Virtualenv: This popular third-party tool enhances the functionality
provided by the venv module.



While it utilizes venv under the hood, Virtualenv adds extra features and
flexibility to make the process more robust and user-friendly.

Conda: Conda is a popular package and environment management system,
commonly utilized within the data science community. It serves as the
package manager for the Anaconda Python distribution.

It provides functionality for creating and managing virtual environments,
along with package installation and dependency management.

Pipenv: Pipenv is a popular tool that combines package management with
virtual environment management. It creates a Pipfile to manage
dependencies and a Pipfile.lock to lock dependency versions.

Poetry: Poetry is a modern dependency management tool and project
manager for Python projects. It allows you to define project dependencies
and settings in a pyproject.toml file.

Virtual environments can be created using these tools either from the
command line or through an integrated development environment (IDE)
like IntelliJ IDEA.

While there are scenarios where creating virtual environments from the
command line may be necessary, such as when working on a remote server
or when specific configurations are required, generally, using the IDE is the
preferred approach.

This is because IDEs streamline the process, offer visual aids, and integrate
seamlessly with the development workflow.

In the following, we will demonstrate how to manage virtual environments
directly within IntelliJ IDEA. It’s worth noting that in IntelliJ IDEA, the
term SDK (Software Development Kit) is often used interchangeably with
Virtual Environment in the context of Python projects, as a virtual
environment serves a similar purpose to an SDK in other languages.

IntelliJ IDEA has the capability to create virtual environments internally
without the need for any external tools to be installed.



However, for the purposes of this demonstration, we will utilize Conda.
Conda offers the advantage of creating environments for various Python
versions without the necessity of pre-installing those versions on the
computer.

You can download and install Conda from conda.io.

11.2.2 Creating a Virtual Environment

1.
Navigate to
File →Project Structure →Platform Settings →SDKs.

2.
Click on the + icon and select Python SDK from the dropdown menu. In
the dialog that appears, choose Conda Environment and keep the
selection as New environment.

3.
Specify the location for the new virtual environment. The location can
be anywhere, but it is recommended to create a new directory within
your project directory.

4.
Select the desired Python version for the virtual environment.
Keep in mind that you can only create virtual environments for Python
versions supported by Anaconda, as Conda will download an Anaconda
Python distribution.

5.
Click OK to create the virtual environment.
Conda will then download the selected Python interpreter and pre-install
numerous modules so that you don’t have to install them manually later
on.

6.
After creating the environment, IntelliJ IDEA will assign it a default
name. You can and should rename the virtual environment to something
more descriptive.
Note that this name is only used within IntelliJ IDEA, so Conda
command-line tools will not show this name but the directory path
instead.



11.2.3 Changing a Virtual Environment

1.
Navigate to
File →Project Structure →Project Settings →Modules

and click on the Dependencies tab.
2.

Under Module SDK, select the virtual environment you want to use
from the dropdown menu and click OK.

From then on, the selected virtual environment will be used for running
Python scripts within IntelliJ IDEA with standard settings.

Note that you can also change the virtual environment in the runtime
configuration.

Each runtime configuration can run with a different virtual environment.
This flexibility allows you to comfortably test your scripts against different
Python versions, for example.

11.2.4 Deleting a Virtual Environment

1.
Navigate to
File →Project Structure →Platform Settings →SDKs.

2.
Select the virtual environment you want to delete from the list of SDKs
and click on the - icon.

3.
Navigate to the directory where the virtual environment is located on
your file system. Delete this directory manually.



Chapter 12
Using External Packages

In Python development, much like in Java, external packages are essential
for extending the language’s functionality beyond its standard library.
These packages, also referred to as libraries or modules, are developed and
maintained by the Python community, providing a diverse array of tools and
utilities for tasks ranging from data manipulation and scientific computing
to web development and beyond.

The term "package" can be somewhat misleading. Similar to a Java JAR
file, an external package in Python is an archive that comprises Python code
organized into packages and modules, along with other file types such as
JSON, HTML, LICENSE, README, and metadata like version number,
package dependencies, and author name.

It is important to note that the name of a package is a piece of metadata.

Consequently, an external package can contain more than one Python
package, although this is uncommon. Additionally, the name of the external
package might differ from the name of the contained Python package,
which is a frequent occurrence.

For instance, consider the Pillow package, which is a fork of the Python
Image Library but is named differently from the top-level package PIL it
contains.

In contrast to Java, where external dependencies are often managed
automatically by build tools like Gradle during the compilation process,
Python requires external packages to be explicitly installed into the
environment, either globally or within a virtual environment, before they
can be used.

A module from an installed external package is then usable in Python code
just like a module from an internal package, as described in Chapter 10:
Modules and Packages.



The most common approach to installing external packages in Python is
through package managers like pip, Conda, Pipenv, or Poetry, as well as
built-in IDE tools like the Python Packages Tool in IntelliJ IDEA. These
tools streamline the process of locating, downloading, and installing Python
packages from online repositories.

Alternatively, you can install external packages from their source code or
pre-built binaries by manually downloading them from the package’s
repository or website. Subsequently, these packages can be installed using
the setup.py script or other installation mechanisms provided by the
package.

This method is less common than using package managers, as it requires
more manual effort and is prone to dependency resolution issues. Although
necessary in certain cases, it will not be discussed in this book.

Instead, we will focus on the usage of pip and Conda, as they are the most
widely used tools for managing Python packages and environments.

We will first explain how to use the package managers from a command
line in IntelliJ IDEA’s Python terminal as this is a good way to understand
the principles of package management and then show how to do the same
things using IntelliJ IDEA’s Python Packages Tool.

12.1 Command Line Package Management

When you install Python libraries without an activated virtual environment
using a packet manager, they are stored in the site-packages directory of the
system-wide Python installation.

When you have a virtual environment activated, the Python libraries
installed using a packet manager are stored within the site-packages
directory specific to that virtual environment.

Therefore, before executing any package manager command from the
command line, it is crucial to ensure that you are using the correct shell
environment.



The easiest way to do this is to open a terminal program on your computer
system to install packages system-wide or to open a terminal in IntelliJ
IDEA, which activates the virtual environment configured for your project.

The commands for installing a package are very similar for pip and Conda.
For example, to install the NumPy package, a fundamental package for
scientific computing with Python, you would use one of these:

pip install numpy

conda install numpy

Here numpy is the package name for the NumPy package.

The package names in Python are not inherently hierarchical in the same
way as Java packages, like com.example.package. They are typically using
lowercase letters and hyphens to separate words, such as numpy, or
requests-toolbelt, or eyed3.

pip and Conda fetch their libraries from online repositories.

The primary source for pip is the Python Package Index (PyPI), which is a
repository of software packages developed and maintained by the Python
community.

PyPI has a similar role for Python as Maven Central has for Java. It hosts
thousands of Python packages that can be easily installed using pip.

Conda, on the other hand, has its own package repositories managed by
Anaconda, Inc. These repositories contain a curated collection of packages
optimized for use with Conda and are accessed when installing packages
using the Conda package manager.

In addition to these primary sources, pip and Conda can also be configured
to fetch packages from other repositories or local directories as needed.

Similar to Java, external packages in Python may have dependencies on
other external packages. This dependency information is typically stored in



special files and evaluated by package management tools. When installing a
package, these tools automatically install the required dependencies as well.

For example, when installing the data analysis package pandas, the numpy
package is automatically installed as well.

Similar to Java, Python packages have version numbers and the version
number of the latest version of a package can be queried from the
repository, where the package is stored. Thus it is possible to install a
special version of a package or upgrade a packet to the latest version:

pip install numpy==1.21.0

pip install --upgrade numpy

conda install numpy=1.21.0

conda update numpy

In Conda, it is also possible to update all installed packages at once:

conda update --all

Similar to Java, in Python only one version of a package can be installed in
a specific environment at a time. This means that if multiple packages
depend on different versions of the same package, it can lead to version
conflicts and compatibility issues within the environment.

Therefore it is generally recommended to upgrade packages individually or
in smaller groups to mitigate the risk of conflicts.

To list all installed packages along with their versions, use the following
commands:

pip list

conda list

Both pip and Conda offer straightforward methods for uninstalling
packages.



For example, to remove the NumPy package, you can use the following
commands:

pip uninstall numpy

conda remove numpy

When uninstalling packages using pip or Conda, dependent packages that
are no longer needed by any other installed packages will not be
automatically uninstalled.

This is because package managers typically do not track dependencies
beyond the initial installation.

However, you can use special commands to remove packages along with
their dependencies.

For pip environments you can use:

pip-autoremove numpy

As pip-autoremove is not included with the standard Python installation or
the pip package manager by default, you need to install it first:

pip install pip-autoremove

As of the time of writing this book, additionally, under Windows, after
installing pip-autoremove, you may need to manually adjust the command
for it to work properly.

See https://github.com/invl/pip-autoremove/pull/44
for the details.

With Conda, you can use the --prune option to remove the package along
with its unused dependencies:

conda remove --prune numpy

12.2 IntelliJ IDEA Package Management



IntelliJ IDEA offers a built-in Python Packages Tool that simplifies the
process of managing external packages and dependencies within your
Python projects.

You can access the tool by clicking on the corresponding icon, located in
the lower part of the left menu bar by default.

The tool manages the virtual environment that is currently active. On the
left side, it displays the packages currently installed along with their version
numbers.

If a newer version is available for a package, the version number is shown
as <old version>→<new version>, and clicking on the version number
updates the package to the newest version.

There are also lists for available packages on PyPI and, if the virtual
environment is a Conda environment, for Conda packages.

A search field at the top of the tool window filters the package names in all
lists, making it easy to find a specific package.

Clicking on a package name shows the package description on the right side
of the tool window.

At the top of this description, there is either an install button and a drop-
down menu for selecting the version, or for installed packages, a vertical
ellipsis icon that shows a button to uninstall the package.

It is also possible to manage the packages of all available virtual
environments by navigating to

File →Project Structure →Platform Settings →SDKs

For a selected virtual environment, the Packages tab displays the currently
installed packages and offers the same options to install, update, and
uninstall packages as the Python Packages Tool.

12.3 Managing Project Dependencies



Managing dependencies is a crucial aspect of Python projects, ensuring
smooth development, deployment, and collaboration.

One commonly used method for specifying project dependencies in Python
is through the use of a requirements.txt file. Similar to the dependencies
section in a Gradle script in Java, this file serves as a manifest of all the
external packages and their respective versions required for your project to
run.

While it is common practice to check a requirements.txt file into version
control systems (VCS) to document project dependencies, it is generally
discouraged to include the entire virtual environment directory in VCS.
Instead, including only the requirements.txt file allows collaborators to
recreate the virtual environment locally using this file and tools like pip or
Conda.

While there are alternatives to requirements.txt, such as Pipfile (used
by Pipenv) and environment.yml (used by Conda), this section will focus
on the usage of requirements.txt.

It remains one of the most widely adopted methods for managing Python
project dependencies across various tools and workflows, including Pip,
virtualenv, and Docker, due to its familiarity to many Python developers.

12.3.1 Structure of requirements.txt

The requirements.txt file is typically located at the root directory of your
project.

For each external package that your project relies on, the file contains a line
starting with the package name followed by the version specification.

Here is an example:
pillow==10.2.0 

numpy~=1.26.4 
matplotlib>=3.6.0,<=3.8.3 
requests
 



You can specify versions in various ways:

Exact Version: Pins the version to a specific release.

For example: numpy==1.21.0.

Version Range: Defines a range of acceptable versions using comparison
operators.

For example: numpy>=1.20.0,<1.22.0.

Compatible Releases: Specifies that minor version updates are acceptable
as long as they do not increment the leftmost non-zero digit.

For example: numpy~=1.20.0 allows updating from 1.20.0 to 1.21.0 but not
to 2.0.0

Latest Version: Indicates that your project should use the latest available
version of a package. However, this approach can potentially introduce
compatibility issues, so it is generally not recommended.

For example: numpy.

Comment lines starting with # are possible as well.

Additionally, there are other specifications possible in this file, such as
referencing other requirements files, but this is beyond the scope of this
book.

12.3.2 Creating requirements.txt

In addition to manually creating a requirements.txt file, you can utilize
command-line tools such as pip or utilize IDE features like the one
provided by IntelliJ IDEA, to automatically generate the file.

Before proceeding, please ensure that the virtual environment containing
the dependencies you wish to record is activated.



To generate requirements.txt using pip, use the following command:

pip freeze > requirements.txt

This command will create a requirements.txt file in your project
directory containing all the installed packages and their exact versions.

Alternatively you can create requirements.txt in IntelliJ IDEA by
following these steps:

1.
From the Tools menu, select Sync Python Requirements....

2.
In the opened dialog, you can specify the name of the file (by default, it
is set to requirements.txt), the version type (such as no version, exact
version, minimum version, or compatible releases), and a few other
options like removing unused packages.

3.
Click OK to create the file.

12.3.3 Installing requirements.txt

To install the dependencies specified in requirements.txt from the
command line, use the following pip command:

pip install -r requirements.txt

This command instructs pip to install all the packages listed in the
requirements.txt file along with their specified versions.

In IntelliJ IDEA, when you open requirements.txt or a Python file within
a project containing requirements.txt, IntelliJ IDEA checks whether all
the packages specified in requirements.txt are installed for the current
virtual environment. If any packages are missing, a notification bar appears
at the top of the editor, offering to install the missing requirements.

Note that for this the Unsatisfied package requirements inspection needs to
be enabled, which is enabled by default. You can find this inspection under
Settings →Editor →Inspections.



Chapter 13
Executing Python Code

Before exploring the creation of external code distributions, it is important
to understand the process of compiling and running code in Python.
Unlike Java, where a separate compilation step is required to generate
bytecode, Python dynamically generates bytecode on-the-fly when
executing a Python program.

Here is a brief overview of the process:

Compilation: The Python interpreter compiles the source code of a Python
file into bytecode and stores it in a file with the same name but ending in
.pyc.

Interpretation: The Python Virtual Machine (PVM) reads the bytecode
instructions from the .pyc files and executes them sequentially.

When you run a Python script or load a module, the interpreter checks if
there is already a compiled bytecode file (.pyc) corresponding to the source
code (.py) and if the source code has not been modified since the bytecode
was created.

If both conditions are met, the interpreter can reuse the existing bytecode
file, skipping the compilation step and directly executing the bytecode.

Provided that the code in a .py file has been written in a platform-
independent way (for example, by using a delimiter in file paths imported
from a platform package), the bytecode in the .pyc file is platform-
independent.

However, the .pyc code depends on the Python version, and Python makes
no guarantee about bytecode compatibility between versions.

Additionally, it is possible to have modules written in languages other than
Python, such as C++. These modules are called extension modules.



They typically consist of compiled binary code in a platform-specific
format (for example, DLLs for Windows, shared libraries for Linux,
macOS) and provide a certain set of functions and data structures in a
format defined by Python.

This enables the Python interpreter to convert standard import statements
and function calls from Python modules into native code calls of the
extension module.

Integrating external modules into a Python project requires additional IDE
and tool support, which is beyond the scope of this book.



Chapter 14
External Code Distribution

Unlike Java’s JAR files, Python offers a range of packaging options for
external distributions, each suited to different scenarios.
Describing all of them is beyond the scope of this book. Instead, we will
focus on one set of configuration files and tools in the following sections,
which should cover the most common scenarios for external distributions.

14.1 Python Code Package Types

Python code can be packaged into several types of archives, but the most
common formats are sdist and wheel.

A wheel file contains pre-built artifacts for the target system, making
installation straightforward by copying its contents to the appropriate
directories and processing metadata such as dependencies. Typically, a
wheel includes uncompiled .py files for Python modules, compiled
extension modules for the target platform, and additional data files and
metadata.

Since Python modules are compiled at execution time, different platforms
require different wheels, mainly for extension modules or when
compatibility with both Python 2 and 3 is necessary.

On the other hand, an sdist (source distribution) file contains the source
code for extension modules, and may include configuration files like
setup.py for setting up the distribution. When installing from an sdist file,
extension modules are compiled during the installation process on the target
platform.

While wheel files are preferred for production environments due to their
pre-built nature, sdist files are useful when a suitable wheel is unavailable
or for distributing test cases without bloating a production wheel. It is
common practice to publish projects in both formats simultaneously on
platforms like PyPI.



Additionally, there are specialized or less commonly used formats tailored
to specific use cases or environments.

Conda Package (.conda): Conda packages are a distribution format used
by the Conda package manager, typically associated with the Anaconda
distribution. They contain contents similar to those found in a wheel file.

Docker Containers: Python Docker containers used for software
distribution via Docker are typically based on official Python Docker
images provided by Docker Hub or other reputable sources.

These official images serve as the foundation for Python Docker containers,
containing the core Python runtime environment along with additional
libraries or dependencies.

The following section will provide detailed instructions on how to create
sdist and wheel packages.

14.2 Package Creation

Before creating a package file, ensure your project includes the key
components: a well-organized structure, comprehensive documentation,
thorough test scripts, specified dependencies, a README file, and a
LICENSE.

The process of creating a package then involves two main steps:

First, creating the setup.py file to define package metadata and
configuration, and then compiling the package to generate distributable
package files.

There are various tools available for package creation in Python, with
distutils and setuptools being among the most popular choices.

While distutils comes bundled with Python itself, this is not always the
case for setuptools, and other tools definitely require separate installation.



It is important to install the chosen tool before writing the setup.py file
because the file typically imports functions specific to the chosen tool, such
as the setup() function in setuptools and distutils.

In our case, we will use setuptools.

It is worth mentioning that setuptools also supports other configuration
files, such as setup.cfg or pyproject.toml, although these alternatives
will not be explained in this book.

14.2.1 Creating setup.py

In this section, we will demonstrate the creation of a setup.py file.

We will cover two scenarios: One that is simple yet commonly encountered,
and another that is more complex, showcasing some advanced features of
setup.py. The simple scenario involves a package with a subpackage,
structured as follows:

my_project/
|- src/
| |- my_package/
| | |- my_sub_package/
| | | |- __init.py__
| | | |- my_sub_module_1
| | | |- my_sub_module_2
| | |- __init.py__
| | |- my_module_1
| | |- my_module_2
| | |- my_module_3
| |- setup.py.

A simple setup.py for this scenario could look like this:
from setuptools import setup 
 
setup( 
    name="python-simple-packaging-test", 
    version="1.0.0", 
    packages=[ 
        "my_package", 
        "my_package.my_sub_package" 
    ], 



    license="MIT", 
    author="Dr. Jörg Richter", 
    author_email="python-book@nantoka.de", 
    description="A simple packaging test" 
)
 

In this simple form, the configuration parameters passed to the setup()
function contain the name of the distribution (not to be confused with the
name of the distributed package), the version number, the list of distributed
packages, and some metadata (author, email address, description).

It is important to note that in the list of distributed packages, the
subpackage needs to be explicitly listed. Otherwise, setuptools would
only include the modules from the package but not those from the
subpackage in the distribution archive.

Also, ensure that setup.py is placed in the top-level package directory, as
this is where setuptools searches for packages by default.

Creating setup.py using IntelliJ IDEA is straightforward. Simply navigate
to the Tools menu and select Create setup.py.

However, it is important to note that, at the time of writing this book, this
feature works only if the top-level packages for the distribution are
contained in the root directory of the project. Additionally, it does not
support namespace packages.

Here is the structure of a more complex project.

my_project/
|- src_1/
| |- package_1/
| | |- data/
| | | |- data.json
| | | |- webpage.html
| | |- sub_package/
| | | |- __init.py__
| | | |- sub_module_1
| | | |- sub_module_2
| | |- __init.py__
| | |- module_1



| | |- module_2
| | |- module_3
| |- package_2/
| | |- __init.py__
| | |- module_4
| |- package_3/
| | |- __init.py__
| | |- module_5
|- src_2/
| |- package_name_spc/
| | |- module_name_spc
|- src_3/
| |- test_package/
| | |- test_module_1
| | |- test_module_2
|- MANIFEST.in
|- setup.py.

The project comprises code organized into three distinct root directories,
one housing multiple top-level regular packages, while another
accommodates a namespace package.

Furthermore, there is a dedicated package designed for testing purposes,
containing modules specifically tailored for testing. These testing modules
should be included in the sdist distribution but omitted from the wheel.

Please note that packaging configurations for the project are contained
within a single setup.py file located in the project’s top-level directory,
along with an additional file named MANIFEST.in.

In this project, the MANIFEST.in file contains configurations specifically for
adding the test package to the sdist distribution.

The comprehensive usage of MANIFEST.in and its available configurations
are beyond the scope of this book.

Here is the contents of setup.py and MANIFEST.in, showing one possible
configuration for packaging this project.
# setup.py 
from setuptools import \ 
    setup, find_packages, find_namespace_packages 
 



setup( 
    name="python-complex-packaging-test", 
    version="1.1.0", 
    packages=find_packages("src_1") + 
            find_namespace_packages("src_2"), 
    package_dir={ 
        "": "src_1", 
        "package_name_spc": "src_2/package_name_spc" 
    }, 
    package_data={ 
        "package_1": ["data/*.json", "data/*.html"] 
    }, 
    install_requires=[ 
        "matplotlib>=3.8.0", 

        "numpy~=1.26.4", 
    ], 
    license="MIT", 
    author="Dr. Jörg Richter", 
    author_email="python-book@nantoka.de", 
    description="A complex packaging test" 
)
 

# MANIFEST.in 
 
recursive-include src_3 *
 

The function find_packages() scans the specified directory recursively,
identifying regular packages and subpackages based on the presence of
__init.py__ files.

It returns a list containing the names of these packages, eliminating the need
to manually list each package in the packages parameter along with its
subpackages.

find_namespace_packages() is similar to find_packages() but
specifically designed for namespace packages. Unlike find_packages(), it
treats every directory as a package, even if it does not contain an init.py
file.

The package_dir parameter accepts a dictionary that maps package names
to directory paths. It allows you to override the default directory structure
expected by setuptools.



The keys in the package_dir dictionary are package names, and the values
are directory paths relative to the location of setup.py. These directory
paths are platform-independent, meaning they can be specified using
forward slashes ("/") even on Windows systems.

The mapping "": "src_1" specifies that the contents of the src_1 directory
should be treated as top-level package.

The mapping "package_name_spc": "src_2/package_name_spc" specifies
that the contents of package_name_spc, along with its subpackages, should
be found in the directory src_2/package_name_sp.

The package_data parameter is used to specify additional files or patterns
to include in the distribution package alongside Python modules.

These files can include data files, configuration files, templates, and more.
The parameter accepts a dictionary where the keys are package names, and
the values are lists of file patterns or file paths relative to each package
directory.

The install_requires parameter is utilized to specify the dependencies,
namely the packages required for your package to operate correctly. It
accepts a list containing strings formatted similarly to the lines in a
requirements.txt file.

The statement recursive-include src * in the MANIFEST.in file instructs
the packaging tool to recursively include all files and directories within the
src directory when creating the distribution package.

14.2.2 Building Packages

Once you have created the setup.py and, optionally, the MANIFEST.in file,
you are ready to generate the distribution archives.

In IntelliJ IDEA, you can achieve this by selecting Run setup.py Task...
from the Tools menu.



However, there are limitations to this approach: The setup.py file must be
located in the top-level project directory, you can only create one
distribution archive at a time, and the archive is generated by directly
calling setup.py, which is discouraged by the developers of setuptools.

A more robust solution is to use the build package, distributed by the
Python Packaging Authority (PyPA). This package is available on both
PyPI and the Anaconda repository and can be installed using standard tools,
as described in Chapter 10: Modules and Packages.

The benefit of using build is that it creates the package in an isolated
environment, generating both an sdist and a wheel archive with just one
command.

To do this, open a Python shell, navigate to the directory containing the
setup.py file, and execute the following command:

python -m build

This command will create a directory named dist in the current directory,
containing two files: an sdist file with a .tar.gz extension and a wheel file
with a .whl extension. These files are then ready for testing and distribution.

When running the command, most temporary data is automatically cleaned
up afterward. However, the <package name>.egg-info directory,
containing metadata about the package, may persist. If you encounter issues
due to outdated or incorrect metadata, manually delete this directory before
rerunning the command.

After creating the package, it is advisable to conduct a quick "smoke test" to
confirm its correct bundling and functionality.

To do this, set up a new project with a fresh virtual environment. Install the
newly created package by opening a terminal and executing

pip install <package_file>

where <package_file> refers to either the wheel or the sdist file.



Once the package is installed in the virtual environment, you can proceed to
write simple test code to ensure that the essential features are properly
packaged and operational.

Additionally, especially for the sdist file, you can check the directory of the
virtual environment to ensure that all additional files, such as the README
or the LICENSE file, have been installed correctly.

14.2.3 Uploading Packages

Python’s package manager, pip, relies on HTTP for downloading packages,
enabling the upload of Python packages to any server that provides
download URLs, such as AWS S3, Google Cloud Storage, Microsoft Azure
Blob Storage, or a generic web server or file hosting service.

GitHub, in particular, offers a convenient platform for hosting code
repositories and distributing software releases.

To begin, you can create a repository and upload your package code. Then,
you can utilize the Create a new release link on the repository’s homepage
to upload the sdist or wheel file as a release. This allows you to upload
various versions of your package under their respective version numbers.

Now, every user of your package can install it using the pip command:

pip install <package_download_url>

Additionally, users can add a dependency in a requirements.txt file or in
the dependency list of the install_requires parameter in setup.py using
the following syntax:

<package_name> @ <package_download_url>

To share your package widely, publish it on PyPI after creating an account.
You will need tools like twine, which won’t be detailed here.



Part IV
Advanced Python Techniques



Chapter 15
Writing Python Test Code

Among the most popular testing frameworks for Python, two frameworks
stand out: unittest and pytest.
unittest is Python’s built-in testing framework, drawing inspiration from
the xUnit family of testing frameworks. It is sometimes referred to as
PyUnit and shares similarities with JUnit for Java. Being included in every
Python distribution, unittest is readily available and widely adopted,
especially in projects that prioritize standardization and compatibility.

On the other hand, pytest is a third-party testing framework known for its
simplicity, flexibility, and powerful features. It offers advanced capabilities
such as fixtures, parameterized testing, and extensive plugin support,
enabling thorough customization and seamless integration with other tools
and libraries.

In this chapter, we will focus on unittest. Understanding unittest
provides a strong foundation for mastering other testing frameworks,
including pytest.

15.1 Structure of a Test Case Class

In unittest, a test case class inherits from unittest.TestCase. This base
class provides various assertion methods for verifying expected outcomes.

Here is a basic example of a test case class:
import unittest 
 
 
class MyTestCase(unittest.TestCase): 
 
    def test_addition(self): 
        result = 2 + 2 
 
        self.assertEqual(result, 4) 
 
    def test_check_positive_number(self): 
        result = 5 



 
        self.assertTrue(result > 0) 
 
    def test_division_by_zero(self): 
        with (self.assertRaises(ZeroDivisionError)): 
 
            result = 5 / 0
 

Defining more than one test case class in a single module is also possible.

In contrast to JUnit, unittest relies on a naming convention rather than a
decorator to identify methods as test cases. In unittest, any method whose
name begins with test is treated as a test function, while any other method
is considered an auxiliary function.

This naming convention also applies to the file names of modules within a
package; failure to adhere to this convention may result in the modules not
being recognized as containing tests when running all tests within a
package.

15.2 Running Test Cases

Running Python test cases in IntelliJ IDEA is similar to running JUnit test
cases. You can choose to run a specific test module or an entire test package
directory using the following methods:

Right-click on the test module or test package directory in the project
window and select Run Python Tests in... from the context menu.
Click on the gutter icon next to your test case or test class in the editor
window.

The results of the test run will be presented similarly to JUnit test runs in
the Run window, which is typically located at the bottom of the screen by
default.

Alternatively, you can execute the tests from the command line using a
terminal.

To run the tests of a specific module, enter:



python -m unittest <module_name>

To run all tests within a package directory, use the following command:

python -m unittest discover -s <path to directory>

unittest provides several command-line options to tailor the test execution
process.

For instance, using -v increases the verbosity of the command’s output,
which can be particularly useful for pinpointing the cause of failures.
Additionally, you can use the --help option to list all available options.

Please note that the discovery mechanism of the unittest test runner can
handle only top-level namespace packages but will ignore all subpackages
unless they are regular packages.

15.3 Test Organization

Similar to Java, it is considered good practice in Python to keep your test
code closely integrated with the corresponding production code but within a
separate directory. This means organizing test modules and packages in
parallel with the structure of your application’s source code.

For instance, if you have a module named calculator.py in a package
named utility in your production code, you might create a corresponding
test package named test_utility, which contains a module named
test_calculator.py.

In unittest, to avoid code duplication, you have fixtures similar to those
available in JUnit. These fixtures are methods of the TestCase class that
you can override in your test class:

The setUp() method is called before each test method in a test case class
and is used to set up any required resources or state for the test. Conversely,
the tearDown() method is called after each test method and is used to clean
up any resources allocated during testing.



In addition to per-test setup and teardown, unittest also provides class-
level setup and teardown methods: setUpClass() and tearDownClass().
These methods are called once for the entire test case class, allowing you to
perform setup and cleanup actions that are shared across multiple test
methods.

Apart from defining test cases, the unittest module provides decorators
that allow you to modify the behavior of individual test methods or entire
test classes. These decorators are similar to the corresponding annotations
used in JUnit for Java.

@unittest.skip("<Reason for skipping>")

This decorator marks a test method or a test class as skipped. When
applied, the code inside the decorated method or class will not be
executed, and the test case(s) will be marked as ignored in the result list.

You can provide an optional reason for skipping, which will be
displayed in the test output.
@unittest.expectedFailure

This decorator marks a test method or all test methods of a test class as
expected failures. If a test method marked with this decorator fails
during execution, it will be marked as ignored in the result list.
Conversely, if the test method succeeds, it will be marked as a failure.

This decorator is useful for temporarily marking tests that are known to
fail due to issues such as unresolved bugs or incomplete functionality.

Finally, it is also possible to define a selection of test cases and their
execution order using the TestSuite class provided by unittest.

Here is an example:
import unittest 
 
 
class MyTestCase(unittest.TestCase): 
    def test_add(self): 
        self.assertEqual(2 + 2, 4) 
 
    def test_subtract(self): 



        self.assertEqual(5 - 3, 2) 
 
    def test_divide(self): 
        self.assertEqual(6 / 3, 2) 
 
 
suite = unittest.TestSuite() 
suite.addTest(MyTestCase("test_subtract")) 
suite.addTest(MyTestCase("test_add")) 
suite.addTest(MyTestCase("test_add")) 
 
if __name__ == "__main__": 
    print("Running tests") 
    unittest.TextTestRunner(verbosity=2) \ 
        .run(suite)
 

This script constructs the suite and initiates a test runner capable of
handling TestSuite objects, using the TextTestRunner provided by
unittest.

You can then execute the script in a terminal using:

python my_test_suite.py

With the configured verbosity level 2 it will output the result of every test
case.

Please note that the suite is configured to run test_subtract first, followed
by running test_add twice, and test_divide is not run at all.

Also, the clause

if __name__ == "__main__":

prevents the test runner from executing if the script is loaded elsewhere, for
example, when running a single test case in MyTestCase in a debugger
while tracking down an issue.

Additionally, in a real project, you would keep the test class in a separate
module and import the module in the test script that creates and runs the
suite.



Finally, note that if you run this script from the context menu in IntelliJ
IDEA, it will recognize it as a test file and run all three tests from
MyTestCase exactly once.

So, to execute the suite, you will need to run it in a terminal.

15.4 Mocking and Patching

In contrast to Java, creating mock objects in Python and integrating them
into the code under test is much simpler, thanks to Python’s dynamically
typed nature. The unittest.mock subpackage provides all the necessary
tools for creating mocks and specifying their behavior. It also offers
functionality for patching, allowing for the temporary substitution of
attributes or functions within modules or classes.

Although the scope of this book does not allow for a comprehensive
overview of the functionalities offered by unittest.mock, we will provide
a brief introduction to some of its key features in this section.

15.4.1 Creating Mocks

With unittest.mock, the simplest way to create a mock object is by calling
Mock(). The resulting object can then be invoked as a function or accessed
as an object with attributes and methods.

There is no need to explicitly specify the names and return values of the
functions it represents or the attributes it should contain. Whenever the
mock object is called or queried, it dynamically creates another mock object
and returns it.

Additionally, it is possible to specify the behavior of the mock object.

Its behavior as a function is determined by assigning a value to its
return_value attribute, while its behavior for attribute queries is
determined by assigning a value to the corresponding attribute.

Here is an example:



from unittest.mock import Mock 
 
function_mock = Mock() 
function_mock.return_value = 42 
 
result_1 = function_mock("Life", "Universe") 
result_2 = function_mock() 
 
print(result_1, result_2)  # 42 42 
 
object_mock = Mock() 
object_mock.name = "Arthur Dent" 
object_mock.luggage = "Towel" 
object_mock.great_question = function_mock 
 
result_3 = object_mock.name 
result_4 = object_mock.luggage 
result_5 = object_mock.great_question() 
 
print(result_3, result_4, result_5) 
# Arthur Dent Towel 42
 

As result_1 and result_2 show, a function mock can be called with an
arbitrary number of arguments.

It is also possible to verify both the number of method calls and the
parameters passed to those calls.

The assertions in the following example would be applicable to the scenario
described above:
function_mock.assert_called() 
 
function_mock.assert_any_call("Life", "Universe") 
 
assert object_mock.great_question.call_count == 3
 

There is also a subclass of Mock called MagicMock, which offers useful
default values for unconfigured attributes or functions when used with
standard functions, for example:
int(MagicMock())  # returns 1 
float(MagicMock())  # returns 1.0 
MagicMock()[5]  # returns a MagicMock object 



len(MagicMock())  # returns 0 !!!
 

Using Mock instead of MagicMock would raise an exception in these
examples.

So in tests where a mock is needed for an arbitrary value that won’t affect
the test’s outcome, MagicMock can simplify mock setup.

Finally there is an attribute called side_effect that you can specify for a
mocked method in a mock.

It allows you to specify a function or an iterable that will be called or
returned when the mock is called.

This attribute is useful for custom actions or varied return values based on
test inputs or context.

This is how it works:

If side_effect is set to a function, that function will be called with the
same arguments as the mock, and its return value will be used as the
return value of the mock call.
If side_effect is set to an iterable (such as a list or a generator), the
mock will return values from the iterable each time it is called.
If side_effect is set to an exception, then when the mock is called, it
will raise that exception instead of returning a value.

Here is an example:
from unittest.mock import Mock 
 
func_1 = Mock(); func_2 = Mock(); func_3 = Mock() 
func_1.side_effect = lambda x: x + 1 
func_2.side_effect = range(1, 3) 
func_3.side_effect = ValueError("Ooops") 
 
assert func_1(10) == 11 
 
assert func_2() == 1 
assert func_2() == 2 
 



try: 
    func_3() 
except ValueError as e: 
    assert str(e) == "Ooops"
 

15.4.2 Patching

To isolate the code under test from its dependencies, such as external
libraries, modules, or objects, unittest.mock provides a mechanism called
patching.

While covering all aspects of this mechanism is beyond the scope of this
book, we will at least cover the most important features.

A frequently occurring task when writing test cases is mocking HTTP
requests. This can be easily achieved using the @patch decorator. As an
example, consider the following function that performs a simple HTTP
request:
# user_data.py 
 
import requests 
 
url = "https://api.example.com/users" 
 
 
def get_user_list(): 
    response = requests.get(url) 
    if response.status_code == 200: 
        return response.json() 
    else: 
        return None
 

To test the behavior of this function with both successful and failed
requests, you need to patch the requests.get call, as illustrated in this
example:
import unittest 
from unittest.mock import patch, Mock 
from user_data import get_user_list 
 
 



@patch("user_data.requests.get") 
class TestGetUserData(unittest.TestCase): 
 
    def test_success(self, mock_get): 
        data = ["John", "Jill", "Anna"] 
 
        json_mock = Mock() 
        json_mock.return_value = data 
 
        response_mock = Mock() 
        response_mock.status_code = 200 
        response_mock.json = json_mock 
 
        mock_get.return_value = response_mock 
 
        result = get_user_list() 
        self.assertEqual(result, data) 
 
    def test_failure(self, mock_get): 
        response_mock = Mock() 
        response_mock.status_code = 404 
 
        mock_get.return_value = response_mock 
 
        result = get_user_list() 
        self.assertIsNone(result)
 

This example demonstrates the use of the @patch decorator. The decorator
can be applied to individual test functions or to the entire test class, which is
equivalent to applying the decorator to every test function within the class.

The argument to @patch is the target specification, which specifies the
attribute, function or object to be patched as a string representing the import
path to the object.

In the example, user_data.requests.get specifies the requests.get
function as the target, which has become a part of the user_data module
through the import statement at the beginning of the module.

The @patch decorator then creates a mock object for the requests.get
function and passes it as an additional parameter mock_get to the test
methods.



Within the test method, a mock object is first created to simulate the return
value of requests.get, and this mock object is then set as the
return_value for the mocked requests.get function.

Please note that the target specified for @patch is user_data.requests.get
and not requests.get.

In this example, the latter one would have worked as well but would have
violated a general recommendation for patching: Patch where it is used and
not where it is defined.

Ned Batchelder has written an excellent article explaining the reason for
this rule on his blog at https://nedbatchelder.com. I encourage you to
read the article for a deeper understanding of this principle.

https://tinyurl.com/y5k8y3ht

A more complex example is this simple repository, fetching data via
network calls from an external source and buffering it in a database (The
database and remote data implementations are omitted as they are not
needed for the test.):
# repository.py 
from time import time 
from model import Database 
from model import RemoteData 
 
_update_interval = 60.0  # seconds 
 
 
class UserRepository: 
 
    def __init__(self): 
        self._database = Database() 
        self._remote = RemoteData() 
        self._last_update = 0.0 
 
    def get_user_list(self): 
        elapsed = time() - self._last_update 
        if elapsed > _update_interval: 
            self._update_database() 
 
        return self._database.get_user_list() 
 

https://nedbatchelder.com/
https://tinyurl.com/y5k8y3ht


    def _update_database(self): 
        data = self._fetch_data() 
        self._database.save_user_list(data) 
 
        self._last_update = time() 
 
    def _fetch_data(self): 
        return self._remote.user_list()
 

To test the repository’s behavior at startup in isolation, you need to replace
the database and remote access. Though not strictly necessary, you may also
want to replace the real system clock with a mocked clock, allowing you to
control the time.

Here is an example of how you can do this:
from unittest import TestCase 
from unittest.mock import patch, Mock 
 
from repository import UserRepository 
 
 
class TestUserRepository(TestCase): 
 
    @patch("repository.time") 
    @patch("repository.UserRepository._fetch_data") 
    @patch("repository.Database") 
    def test_repository_start( 
            self, mock_db, mock_fetch, mock_time): 
 
        current_time = 1709579635 
        mock_time.return_value = current_time 
 
        mock_db_inst = Mock() 
        mock_db.return_value = mock_db_inst 
 
        data = Mock() 
        mock_fetch.return_value = data 
        mock_db_inst.get_user_list.return_value = \ 
            data 
 
        repo = UserRepository() 
        user_list = repo.get_user_list() 
 
        mock_fetch.assert_called() 



 
        mock_db_inst.save_user_list.\ 
            assert_called_once_with(data) 
 
        self.assertEqual( 
            repo._last_update, current_time) 
 
        self.assertEqual(user_list, data)
 

This example demonstrates a few important features of @patch:

You can attach more than one @patch decorator to a test function or class.

Each decorator adds an additional mock as a parameter to the test function.
The decorators are stacked, meaning that the parameters appear in reverse
order of the @patch statements.

The @patch("repository.Database") decorator creates a mock for a class,
which is not the same as a mock for an instance of a class. A class mock
can be called as a method, simulating the behavior of the __init__
constructor of the class.

So, these two statements:
mock_db_inst = Mock() 
mock_db.return_value = mock_db_inst
 

have the effect that Database() always returns mock_db_inst.

The save method of Database() is not mocked explicitly in the preparation
of the test case. However, it is still possible to check whether or not it has
been called using the statement:
mock_db_instance.save.\ 
    assert_called_once_with(data)
 

This is because calling a mock of an instance with any method
automatically creates a method mock, which then creates an answer mock
and returns it as a result of the method call.



@patch("repository.UserRepository._fetch_data") is an example of
how to patch an internal method of a class. Since it is an internal function,
the patch target is both where it is defined and where it is used. Therefore,
the rule for patching targets mentioned earlier is not violated in this case.

Please also note that @patch cannot handle private member functions due to
name mangling (Name mangling is explained in Chapter 5: Object-
Oriented Programming). If you replace the _fetch_data method with
__fetch_data, the corresponding @patch statement will throw an
AttributeError because, due to name mangling, the __fetch_data method
does not exist at runtime.

As an alternative to the @patch decorator, unittest.mock provides a
function patch(), which returns a context manager that can be used with a
with statement.

Additionally, there is a function named patch.object(), which allows you
to temporarily patch an attribute or method of an already instantiated object.

This function is especially useful when you want to patch instance variables
created in an __init__ function of a class, as these variables are not yet
available at compile time and cannot be accessed with @patch.

Using patch and patch.object, the test class for UserRepository can be
rewritten as follows:
from unittest import TestCase 
from unittest.mock import patch, Mock 
 
from repository import UserRepository 
 
 
class TestUserRepository(TestCase): 
 
    def test_repository_start(self): 
 
        with patch("repository.time") as mock_time: 
            current_time = 1709579635 
            mock_time.return_value = current_time 
 
            repo = UserRepository() 
 



            with patch.object(repo, "_database") \ 
                    as mock_db, \ 
                 patch.object(repo, "_remote") \ 
                    as mock_rem: 
 
                data = Mock() 
                mock_rem.user_list.return_value\ 
                    = data 
                mock_db.get_user_list.return_value\ 
                    = data 
 
                user_list = repo.get_user_list() 
 
                mock_rem.user_list.assert_called() 
 
                mock_db.save_user_list.\ 
                    assert_called_once_with(data) 
 
                self.assertEqual( 
                    repo._last_update, current_time) 
 
                self.assertEqual(user_list, data)
 

Please note the different setup of the test case: Instead of patching the class
definitions first and then creating the object under test, the object under test
is created first, and then the attributes of the object are patched afterward.

Also note that the statement patch.object(repo, "_remote") has the
object as a patch target, in contrast to patch that has the import path of the
class as the target.

15.5 Code Coverage Reports

As in Java, measuring code coverage in Python tests is crucial for
understanding how much of your code is exercised by your tests.

There are several tools available for measuring code coverage in Python,
with coverage.py being among the most popular ones, which will be
described in the following.



Before using the tool you need to install the coverage package (Installing
packages is explained in Chapter 12: Using External Packages).

Next, open a terminal and navigate to the directory where your tests are
stored. Then, execute the following command:

coverage run -m unittest discover

This command will execute all tests found in the directory and its
subdirectories, generating a binary result file named .coverage.

The command

coverage report

will then output a simple report containing the coverage percentages of all
involved modules. Conversely, the command

coverage html

will create a directory named htmlcov that contains a webpage index.html,
displaying a detailed coverage report.



Chapter 16
Parallelism and Concurrency

Parallelism and concurrency are often used interchangeably, but they
represent distinct concepts:
Parallelism involves executing multiple processes simultaneously on
multiple CPU cores or processing units. This means that multiple tasks are
being performed at the same time, allowing for potentially increased
throughput and performance.

Concurrency, on the other hand, refers to the ability of a system to execute
multiple tasks within a single process simultaneously. While these tasks
may appear to overlap in time, they are often managed by the operating
system’s scheduler, which switches between tasks rapidly, giving the
illusion of simultaneous execution.

In Python programming, parallelism and concurrency play a critical role in
building responsive, scalable, and efficient applications, particularly in
scenarios involving I/O-bound and CPU-bound tasks:

CPU-bound tasks are those that primarily require processing power or
computational resources to complete. These tasks typically involve heavy
calculations, mathematical operations, or data manipulation that heavily
utilize the CPU. Examples include sorting large datasets, performing
complex mathematical computations, or running intensive algorithms.

I/O-bound tasks are those that primarily involve waiting for input/output
operations to complete, such as reading from or writing to files, network
operations, or interacting with databases. These tasks spend a significant
amount of time waiting for external resources to respond and are not
heavily CPU-intensive.

Python provides several packages and libraries to handle CPU-bound and
I/O-bound tasks efficiently. In the following sections, we will explore the
multiprocessing, threading, process / thread pools, and asyncio packages in
depth.



16.1 Multiprocessing

Multiprocessing is a technique used in Python to execute multiple processes
concurrently, taking advantage of multiple CPU cores or processors. These
processes are separate instances of the Python interpreter running in their
own memory space.

Starting a process involves defining the task to be executed in a function
and passing this function to an instance of the Process class provided by
Python’s built-in multiprocessing module, optionally along with
additional parameters.

You can start a process using the start() method, which launches the
process and executes the target function. You can also use methods like
join() to wait for a process to complete and terminate() or kill() to
terminate a process prematurely.

Here is an example:
from multiprocessing import Process 
 
 
def worker(name, age): 
    print(f"{name} is {age} years old") 
 
 
if __name__ == "__main__": 
    args = ("Alice", 30) 
 
    process = Process(target=worker, args=args) 
 
    process.start() 
    process.join() 
 
#  Alice is 30 years old
 

Not all objects can be passed as process parameters in Python. Python uses
a process called pickling to serialize and deserialize objects, allowing them
to be passed as arguments to processes.



Pickling involves converting Python objects into a byte stream that can be
transmitted across processes or stored in files, and then reconstructing the
original objects from the byte stream.

However, not all objects can be pickled. For example, objects that represent
open file handles, sockets, or database connections typically cannot be
pickled. Each process needs to create these objects separately.

Please note that in the context of multiprocessing, each process created by
Process will import the script module, including all its global variables and
top-level code. Without the if __name__ == "__main__": guard, the top-
level code would be executed in each child process again, leading to an
infinite recursion of child process creation.

16.2 Inter-Process Communication

Multiple processes cannot communicate directly using global attributes
because each process has its own separate memory space. Therefore,
changes made to global attributes in one process are not visible to other
processes.

For example, the following code will repeatedly print 42 for ten seconds
and ignore any changes made to the global variable, which is set to 0:
from multiprocessing import Process 
from time import sleep 
 
i = 42 
 
 
def worker(): 
    while True: 
        print(i) 
 
 
if __name__ == "__main__": 
 
    process = Process(target=worker) 
 
    process.start() 
    i = 0 
    sleep(10) 



    process.kill() 
 
# 42 
# 42 
# ...
 

Thus, Inter-Process Communication (IPC) is crucial for enabling
communication between processes in a multiprocessing environment.

Python offers various IPC mechanisms, of which we will explore the basics
of the following three:

Queues are thread and process-safe data structures used for communication
between processes. They support multiple producers and consumers.

Pipes allow two processes to communicate by creating a pipe, which acts as
a bidirectional communication channel. One process writes data to the pipe,
and the other process reads data from the pipe.

Locks allow only one process at a time to acquire access to a shared
resource, such as a log file.

16.2.1 Queues

The Queue class provided by the multiprocessing package facilitates smooth
coordination among multiple processes, adhering to the FIFO (First-In,
First-Out) principle. This enables one or more processes to produce and
enqueue items, while others dequeue and consume them.

Here is an example ( In all examples in this chapter, the sleep() function is
used as a placeholder for a blocking CPU-bound or I/O-bound task.) where
the main process distributes 15 jobs to a pool of three worker processes:
from multiprocessing import Process, Queue 
from time import sleep 
 
 
def worker(number, input_queue): 
    while True: 
        item = input_queue.get() 



        if item == "Terminate": 
            break 
        print(f"Worker {number}: {item}") 
        sleep(1) 
 
 
if __name__ == "__main__": 
    q = Queue() 
 
    process_1 = Process(target=worker, args=(1, q)) 
    process_2 = Process(target=worker, args=(2, q,)) 
    process_3 = Process(target=worker, args=(3, q,)) 
    process_1.start() 
    process_2.start() 
    process_3.start() 
 
    for i in range(15): 
        q.put(i) 
    q.put("Terminate") 
    q.put("Terminate") 
    q.put("Terminate") 
 
    process_1.join() 
    process_2.join() 
    process_3.join() 
 
# Worker 1: 0 
# Worker 2: 1 
# Worker 3: 2 
# ...
 

16.2.2 Pipes

The Pipe class provided by the multiprocessing package facilitates two-
way communication between two processes.

Leveraging lower-level operating system features, communication via pipes
is typically significantly faster compared to queues.

Here is an example where two processes send the words "Ping" and "Pong"
back and forth:
from multiprocessing import Process, Pipe 
from time import sleep 



 
 
def worker(my_pipe, ping_or_pong, start): 
    if start: 
        my_pipe.send(ping_or_pong) 
 
    while True: 
        word = my_pipe.recv() 
        print(word) 
 
        my_pipe.send(ping_or_pong) 
 
 
if __name__ == "__main__": 
    pipe_ends = Pipe() 
 
    args_1 = (pipe_ends[0], "Ping", True) 
    process_1 = Process(target=worker, args=args_1) 
 
    args_2 = (pipe_ends[1], "Pong", False) 
    process_2 = Process(target=worker, args=args_2) 
 
    process_1.start() 
    process_2.start() 
 
    sleep(5) 
 
    process_1.kill() 
    process_2.kill() 
 
# Ping 
# Pong 
# ...
 

16.2.3 Locks

The multiprocessing module provides a Lock class, which can be utilized
to coordinate access to shared resources, like log files, among multiple
processes.

In addition to providing acquire() and release() methods for this
purpose, a Lock object can also be used as a context manager using the with



statement. This context manager automatically acquires and releases the
lock when entering and exiting the with block, respectively.

Here is an example where a lock is used to ensure that the two-line outputs
of several processes are kept together as groups:
from multiprocessing import Process, Lock 
from time import sleep 
 
 
def worker(number, print_lock): 
    for i in range(5): 
        with print_lock: 
            print(f"Worker {number}") 
            sleep(1) 
            print(f"i = {i}") 
 
 
if __name__ == "__main__": 
    lock = Lock() 
 
    processes = [ 
        Process(target=worker, args=(i, lock)) 
        for i in range(5) 
    ] 
 
    for process in processes: 
        process.start() 
 
    for process in processes: 
        process.join() 
 
# Worker 0 
# i = 0 
# Worker 2 
# i = 0 
# ...
 

16.2.4 Shared Memory

In addition to the communication mechanisms described here, shared
memory is another concept used for IPC.



Shared memory allows multiple processes to share a region of memory,
enabling them to exchange data more efficiently than other IPC methods
like pipes or queues.

The shared memory implementations provided by the multiprocessing
module rely on C Programming Language data types and byte streams.

While shared memory can offer high performance and efficiency in certain
scenarios, it also introduces challenges related to synchronization, data
consistency, and platform compatibility. As such, it will not be described in
this book.

16.3 Threading

Just like in Java, threading in Python allows tasks to run concurrently
within a single process. (An important difference between Java and Python
threading will be explained in the next section.)

16.3.1 Creating and Running Threads

Python’s built-in threading module provides a high-level interface for
working with threads. Threads can be created by subclassing the Thread
class and overwriting its run() method or by passing a target function to the
Thread constructor. Once created, threads can be started, paused, resumed,
and terminated using methods provided by the Thread class. Similar to
processes, threads also have a join() function that allows you to wait for
the thread to terminate.

Here is an example of a thread running a countdown timer:
from threading import Thread 
 
 
class MyCountDownThread(Thread): 
    def __init__(self, start): 
        super().__init__() 
        self.counter = start 
 
    def run(self): 
        while self.counter > 0: 



            print(f"Counter = {self.counter}") 
            self.counter -= 1 
 
        print("Count Down Finished!") 
 
 
def print_hello_world(): 
    print("Hello World!") 
 
 
thread_1 = MyCountDownThread(100) 
thread_1.start() 
thread_1.join() 
 
thread_2 = Thread(target=print_hello_world()) 
thread_2.start() 
thread_2.join() 
 
# Counter = 100 
# ... 
# Counter = 1 
# Count Down Finished! 
# Hello World!
 

16.3.2 Thread Synchronization Techniques

With threads, there is no need for Inter-Process Communication
mechanisms like pipes or queues because threads within the same process
share the same memory space. This means that data can be shared directly
between threads without the overhead of communication between separate
processes.

However, there is still a need for synchronizing access to shared data to
prevent race conditions and ensure data integrity.

The threading package in Python offers a wide range of features for thread
synchronization. In the following we will explore a few of these
synchronization techniques and demonstrate how they can be used to
manage concurrent access to shared data.

Locks



Locks behave similarly to the locks provided by the multiprocessing
package.

Here is an example of synchronizing several threads writing to the same
file:
from threading import Thread, Lock 
from time import sleep 
 
lock = Lock() 
 
 
class FileWriter(Thread): 
    def __init__(self, writer_id, output_file): 
        super().__init__() 
        self.id = writer_id 
        self.file = output_file 
 
    def run(self): 
        for i in range(5): 
            with lock: 
                self.file.write( 
                    f"Writer {self.id}: {i}\n" 
                ) 
            sleep(1) 
 
 
with open("my_file.txt", "w") as file: 
 
    threads = [ 
        FileWriter(i, file) 
        for i in range(5) 
    ] 
 
    for thread in threads: 
        thread.start() 
 
    for thread in threads: 
        thread.join() 
 
# my_file.txt: 
# Writer 0: 0 
# Writer 1: 0 
# Writer 2: 0 
# ...
 



Semaphores

Semaphores in Python work much like they do in Java. They are a way to
control access to a shared resource by allowing only a certain number of
threads to use it at the same time.

In addition to the acquire() and release() methods provided by the class
Semaphore, a Semaphore object can also be used as a context manager with
a with statement. This context manager automatically acquires a permit at
the beginning and releases it at the end of the with block.

Here is an example of a pool of single-use threads where a maximum of
three threads are allowed to run simultaneously:
from threading import Thread, Semaphore 
from time import sleep 
 
semaphore = Semaphore(3) 
 
class Worker(Thread): 
    def __init__(self, worker_id): 
        super().__init__() 
        self.id = worker_id 
 
    def run(self): 
        with semaphore: 
            print(f"Worker: {self.id}") 
            sleep(3) 
 
 
threads = [ 
    Worker(i) 
    for i in range(50) 
] 
 
for thread in threads: 
    thread.start() 
 
for thread in threads: 
    thread.join() 
 
# Worker: 0 
# Worker: 1 
# Worker: 2 



# ...
 

Condition Variables

Similar to Java, condition variables in Python provided by the Condition
class, are synchronization primitives used to coordinate the execution of
threads based on certain conditions. They are typically used in conjunction
with locks, integrated into the condition variable itself, to control access to
shared resources.

Threads can wait on a condition variable using the wait() method. When a
thread calls wait(), it releases the associated lock and enters a blocked state
until another thread notifies it.

Threads can be notified using the notify() or notify_all() methods.

When a thread calls notify(), it wakes up one waiting thread that is
blocked on the condition variable. If multiple threads are waiting, it is not
deterministic which thread will be awakened.

The notify_all() method wakes up all waiting threads.

After being awakened, the thread must reacquire the associated lock before
it can proceed.

In addition to providing the wait(), notify(), and notify_all() methods,
a Condition object can also be used as a context manager using the with
statement. This context manager automatically acquires and releases the
associated lock when entering and exiting the block of code, respectively.

It is important to note that wait(), notify(), and notify_all() must be
called from within the block of a with statement.

The code below provides an example of using a condition variable, where a
single producer irregularly produces items, requiring consumers to wait for
new items.
from threading import Thread, Condition 
from time import sleep 



 
buffer = [] 
 
item_available = Condition() 
signal_term = "Terminate" 
 
 
class Producer(Thread): 
    def run(self): 
        for item in range(100): 
            if item % 10 == 0: 
                sleep(5) 
            with item_available: 
                print(f"Producer: Item {item}") 
                buffer.insert(0, item) 
                item_available.notify() 
 
        with item_available: 
            buffer.insert(0, signal_term) 
            item_available.notify_all() 
 
 
class Consumer(Thread): 
    def __init__(self, consumer_id): 
        super().__init__() 
        self.id = consumer_id 
 
    def run(self): 
        while True: 
            with item_available: 
                if not buffer: 
                    item_available.wait() 
                item = buffer.pop() 
 
                if item == signal_term: 
                    buffer.insert(0, signal_term) 
                    return 
 
            print(f"Consumer {self.id}: Item {item}") 
            sleep(5) 
 
 
consumer_threads = [ 
    Consumer(consumer_id) 
    for consumer_id in range(5) 
] 
 
for consumer_thread in consumer_threads: 



    consumer_thread.start() 
 
producer_thread = Producer() 
producer_thread.start() 
 
producer_thread.join() 
for consumer_thread in consumer_threads: 
    consumer_thread.join() 
 
# Producer: Item 0 
# ... 
# Producer: Item 9 
# Consumer 0: Item 0 
# Consumer 1: Item 1 
# ...
 

Event Objects

Event objects are synchronization primitives used to communicate between
threads by signaling when a certain event has occurred. Threads can wait
for an event to be set by another thread and then proceed accordingly.

Threads can call the wait() method to wait for the event to be set. If the
event is already set, the thread continues execution immediately. If not, it
waits until another thread sets the event using the set() method.

The set() method sets the event, allowing threads waiting for the event to
proceed.

The clear() method resets the event, indicating that it is not set. Threads
calling wait() after the event has been cleared will block until another
thread sets the event again.

Here is an example where a thread provides a "printer access" after some
delay:
from threading import Thread, Event 
from time import sleep 
 
printer_available = Event() 
 
printer = None 



 
 
class PrinterCreator(Thread): 
 
    def run(self): 
        sleep(3) 
 
        global printer 
        printer = lambda x: print(f"Printer: {x}") 
 
        printer_available.set() 
 
 
PrinterCreator().start() 
 
printer_available.wait() 
printer("Hello World") 
 
# Printer: Hello World
 

16.4 Managing Concurrency with Pools

The concurrent package in Python offers a range of tools for managing
concurrency and parallelism at a lower, and sometimes more platform-
dependent, level. Providing a comprehensive description of this package is
beyond the scope of this book.

However, we will focus on key components such as process and thread
pools, as well as futures, provided by its concurrent.futures subpackage.

Thread and process pools are an important tool for managing concurrency
because they pre-allocate a pool of threads or processes that remain alive
and ready to execute multiple tasks until the pool is explicitly shut down.
This approach avoids the overhead of creating and destroying threads or
processes for each individual task.

They are similar to Java’s ExecutorService interface but, unlike Java,
support not only thread pools but also process pools.

Here is an example of using a process pool:



from concurrent.futures import ProcessPoolExecutor 
from time import sleep 
 
 
def square(x): 
    sleep(2) 
    return x * x 
 
 
if __name__ == "__main__": 
    with ProcessPoolExecutor(max_workers=2)\ 
            as executor: 
 
        futures = [executor.submit(square, i) 
                   for i in range(1, 6)] 
 
        print("Everything submitted") 
 
        for future in futures: 
            result = future.result() 
            print("Result:", result) 
 
# Everything submitted 
# Result: 1 
# Result: 4 
# Result: 9 
# Result: 16 
# Result: 25
 

Please note that the if __name__ == "__main__": guard is necessary here
for the same reasons as explained in the multiprocessing examples.

The statement

ProcessPoolExecutor(max_workers=2)

creates a ProcessPoolExecutor object, which manages a pool of 2 worker
processes for executing tasks. This executor can be used as a context
manager within a with statement, handling the setup and teardown of the
process pool.

Using the submit method of a ProcessPoolExecutor object, you can
asynchronously submit a callable (like a function or lambda) along with its



arguments for execution in one of the worker processes.

If all worker processes are busy when a new task is submitted, it is queued
until a worker becomes available. Once a worker is free, it picks up the next
task from the queue and starts processing it.

The submit method returns a Future object immediately, representing the
result of the asynchronous computation. This Future object can be used to
monitor the task’s status and retrieve its result once it is completed.

The most important methods of a Future object are:

done(): Returns True if the future has completed its computation or been
cancelled, False otherwise.

result(): Returns the result of the computation if it is available. If the
computation has not yet completed, this method will block until the result is
available or until the optional timeout (in seconds) expires.

exception(): Returns the exception raised by the computation if it has
failed. If the computation has not yet completed or has not raised an
exception, this method will block until an exception is raised or until the
optional timeout (in seconds) expires.

cancel(): Attempts to cancel the execution of the computation. Returns
True if the cancellation was successful, False otherwise.

add_done_callback(<callback function>): Adds a callback function to
be called when the future completes its computation or is cancelled. The
callback function will be executed in one of the processes from the process
pool with the future object as its sole argument.

The above code functions similarly when

ProcessPoolExecutor(max_workers=2)

is replaced with

ThreadPoolExecutor(max_workers=2),



except that now all tasks are executed within threads running in the same
process on a single CPU core.

The explanation for why thread pools in Python, unlike Java, cannot
achieve true parallelism is provided in the following section.

16.5 Global Interpreter Lock (GIL)

The Global Interpreter Lock (GIL) in Python ensures that only one thread
can execute Python bytecode at a time, even on multi-core systems with
multiple CPU cores, in contrast to Java’s concurrency model. Here is a
detailed explanation of how it operates:

1.
Thread Execution:
When a Python program starts, the interpreter initializes the GIL, which
acts as a mutex to control access to Python objects and memory.

As the program executes, multiple threads may be created to perform
concurrent tasks, such as I/O operations, computation, or data
processing.

Each thread operates independently and can execute Python bytecode
instructions to perform its assigned tasks.

2.
GIL Acquisition:
When a thread wants to execute Python bytecode, it attempts to acquire
the GIL.

If the GIL is available (i.e., no other thread currently holds it), the thread
acquires the GIL and proceeds with executing bytecode.

If the GIL is already held by another thread, the requesting thread must
wait until the GIL is released.

3.
Exclusive Execution:
Once a thread holds the GIL, it has exclusive access to Python objects
and memory, allowing it to execute Python bytecode without



interference from other threads.
4.

GIL Release:
When a thread completes its task or reaches a point where it can
voluntarily release the GIL, such as during I/O operations or long-
running computations that do not require the GIL, it releases the lock to
allow other threads to acquire it.

For example, a thread performing file I/O operations may voluntarily
release the GIL while waiting for data to be read from or written to a
file.

Similarly, a thread executing a time-consuming mathematical
computation that does not involve shared Python objects may release the
GIL to allow other threads to execute Python bytecode concurrently.

This is typically handled automatically by the Python interpreter.

Releasing the GIL allows other waiting threads to acquire it and
continue executing Python bytecode, enabling concurrent execution of
multiple threads.

5.
Interleaved Execution:
The Python interpreter includes a scheduler for managing the
interleaved execution of threads. However, this scheduler operates
within the constraints of the GIL, which allows only one thread to
execute Python bytecode at a time.

Despite this limitation, the scheduler ensures that all threads have a
chance to acquire the GIL and execute their bytecode in an interleaved
manner.

The scheduler can also switch to another waiting thread, enabling it to
execute its bytecode when a thread releases the GIL, such as during I/O
operations or long-running computations.

All in all, this means that while multiple threads in Python can run
concurrently, their performance is constrained by the Global Interpreter



Lock (GIL), which limits their ability to effectively utilize multiple CPU
cores. This limitation significantly hinders parallelism and scalability,
particularly in CPU-bound workloads.

As previously discussed in the section on multiprocessing, one effective
approach to overcome the limitations imposed by the GIL in Python is to
leverage multiprocessing instead of multithreading.

By utilizing separate processes, each with its own Python interpreter and
GIL, multiprocessing enables true parallelism across multiple CPU cores
without being constrained by the GIL.

Another approach to overcoming the limitations imposed by the GIL is
through cooperative multitasking, which will be described in the next
section.

16.6 Asynchronous Programming

16.6.1 Overview

Asynchronous programming is a programming paradigm that enables
concurrent execution of multiple tasks without the need for explicit
threading or multiprocessing.

asyncio is a Python library that simplifies asynchronous programming by
providing high-level abstractions for managing asynchronous tasks.

It consists of the following components:

Coroutines: Special functions that run asynchronously within a thread.
They are defined using the async keyword, indicating that the function is
asynchronous and can be awaited for completion. Coroutines can start other
coroutines and await their results.

Event loop: Coordinates the scheduling and execution of coroutines. Each
thread typically has exactly one associated event loop, and coroutines
scheduled by the event loop run within that thread.



Tasks: Objects that represent the execution of coroutines within the event
loop. Tasks allow you to manage the execution of coroutines and await their
results asynchronously.

Executors: Objects that manage the execution of blocking or CPU-bound
tasks in separate threads or processes, allowing the event loop to remain
responsive. Executors are typically created within a coroutine that
asynchronously waits for the executor to finish and return a result.

Coroutines are lightweight concurrency units that can be cooperatively
scheduled within a single thread. They typically have lower overhead
compared to threads, as they don’t involve context switching or OS-level
thread management.

With the help of executors, coroutines provide a convenient way to work
around the limitations imposed by the GIL for I/O-bound or CPU-bound
tasks.

While asyncio offers many features for async programming, its full depth
is beyond the scope of this book. However, in the next sections, you will get
a good overview, so you will understand how asyncio works and how to use
it effectively.

16.6.2 Creating and Running Coroutines

Creating just one coroutine and running it is very simple with asyncio.

Here is an example:
import asyncio 
 
 
async def my_coroutine(): 
    print("Coroutine started") 
    await asyncio.sleep(1) 
    print("Coroutine resumed after 1 second") 
 
    return 42 
 
result = asyncio.run(my_coroutine()) 
print(result) 



 
# Coroutine started 
# Coroutine resumed after 1 second 
# 42
 

The keywords async def mark the function my_coroutine as a coroutine,
indicating that it cannot be directly invoked but must be scheduled for
execution by the event loop.

Using asyncio.run(my_coroutine()) initiates the creation of an event
loop for the current thread. It then generates a task for my_coroutine,
allows the event loop to begin executing the task, waits for its completion,
and finally returns its result.

Please note that while asyncio.sleep() suspends the execution of the
coroutine for the specified duration, allowing other coroutines to run in the
meantime, using time.sleep() instead would have blocked the entire
thread, preventing the event loop from processing other coroutines during
this period.

The following example demonstrates a main coroutine initiating another
coroutine, awaiting its completion, and then initiating the next coroutine.
import asyncio 
 
 
async def my_coroutine(number, sleep_time): 
    print(f"{number}: Falling asleep ...") 
    await asyncio.sleep(sleep_time) 
 
    print(f"{number}: Waking up ...") 
 
 
async def main(): 
    await my_coroutine(1, 2) 
    await my_coroutine(2, 8) 
 
asyncio.run(main()) 
 
# 1: Falling asleep ... 
# 1: Waking up ... 
# 2: Falling asleep ... 
# 2: Waking up ...



                                                             
                                                             
 

await creates a task from a coroutine, schedules it into the event loop of the
thread, and then waits for its completion, eventually returning its result.

In this modification of the last example, the coroutines run concurrently,
meaning the second coroutine is already scheduled while the first coroutine
is suspended.
import asyncio 
 
 
async def my_coroutine(number, sleep_time): 
    print(f"{number}: Falling asleep ...") 
    await asyncio.sleep(sleep_time) 
 
    print(f"{number}: Waking up ...") 
    return number 
 
 
async def main(): 
    result = await asyncio.gather( 
        my_coroutine(1, 2), 
        my_coroutine(2, 8) 
    ) 
 
    print(result) 
 
asyncio.run(main()) 
 
# 1: Falling asleep ... 
# 2: Falling asleep ... 
# 1: Waking up ... 
# 2: Waking up ... 
# [1, 2]
 

asyncio.gather, similar to await, creates tasks for every coroutine passed,
schedules them into the event loop of the thread, waits for the completion of
all tasks, and returns their results in a list.

Finally, here is an example demonstrating the explicit creation of tasks:



import asyncio 
 
 
async def my_coroutine(number, sleep_time): 
    print(f"{number}: Falling asleep ...") 
    await asyncio.sleep(sleep_time) 
 
    print(f"{number}: Waking up ...") 
    return number 
 
 
async def main(): 
    task_1 = asyncio.create_task(my_coroutine(1, 3), 
                                 name="Task 1") 
    task_2 = asyncio.create_task(my_coroutine(2, 10), 
                                 name="Task 2") 
    task_3 = asyncio.create_task(my_coroutine(3, 10), 
                                 name="Task 3") 
 
    done, pending = await asyncio.wait( 
        [task_1, task_2, task_3], 
        return_when=asyncio.FIRST_COMPLETED) 
 
    for task in done: 
        name = task.get_name() 
        result = task.result() 
        print(f"Done: {name}, result = {result}") 
 
    for task in pending: 
        print(f"Pending: {task.get_name()}") 
 
    task_2.cancel() 
    task_3.cancel() 
 
asyncio.run(main()) 
 
# 1: Falling asleep ... 
# 2: Falling asleep ... 
# 3: Falling asleep ... 
# 1: Waking up ... 
# Done: Task 1, result = 1 
# Pending: Task 3 
# Pending: Task 2
 

asyncio.create_task not only creates a task but also submits it to the
event loop for processing.



asyncio.wait is a coroutine function that waits until a certain condition is
fulfilled for a list of tasks. The default condition is "all tasks completed". In
this example, the condition is already fulfilled when at least one task is
completed.

The result of asyncio.wait is a tuple of two Future sets for the completed
and not yet completed tasks.

Finally the main() coroutine cancels the two remaining tasks prematurely.

Up to this point, our examples have primarily relied on the implicit creation
of event loops by functions such as asyncio.run(). However, there are
scenarios where explicitly creating an event loop can be beneficial.

One reason is the need for more fine-grained control over the event loop’s
behavior and execution. Moreover, explicit event loop creation allows
developers to implement custom monitoring, tracing, and debugging
functionalities tailored to their specific requirements. Additionally, explicit
event loop management can be useful in situations where multiple event
loops need to coexist or when integrating asyncio with other event loop
frameworks.

While providing examples for all potential use cases of explicit event loop
creation is beyond the scope of this book, we will illustrate one example to
demonstrate its practical application.
import asyncio 
 
 
async def worker(worker_id): 
    if worker_id >= 0: 
        await asyncio.sleep(1) 
        print(f"Worker {worker_id}: Finished") 
    else: 
        raise ValueError() 
 
 
async def main(): 
    tasks = [ 
        asyncio.create_task( 
            worker(i), name=f"Worker: {i}") 
 



        for i in [1, -1, 2, -2, 3, -3] 
    ] 
 
    await asyncio.wait(tasks) 
 
 
def custom_exception_handler(loop, context): 
    task_name = context["future"].get_name() 
 
    print(f"{task_name} raised an exception") 
 
 
loop = asyncio.new_event_loop() 
loop.set_exception_handler(custom_exception_handler) 
 
loop.run_until_complete(main()) 
 
# Worker 1: Finished 
# Worker 2: Finished 
# Worker 3: Finished 
# Worker: -3 raised an exception 
# Worker: -2 raised an exception 
# Worker: -1 raised an exception
 

In this example, a brief list of tasks is generated, with some tasks designed
to raise exceptions.

A new event loop is initialized using asyncio.new_event_loop(), and a
custom exception handler, which prints the name of the task that triggered
the exception, is bound to the event loop.

Finally, the loop is started with run_until_complete(), which processes all
tasks until completion.

16.6.3 Executors

In asynchronous programming with asyncio, coroutines are the building
blocks of concurrent execution. Unlike threads, where the operating system
handles context switching and scheduling, with coroutines, it is the
responsibility of the programmer to ensure that a coroutine relinquishes
control to the event loop in a timely manner.



Failure to do so can lead to blocking other coroutines, potentially causing
delays or even deadlock in the application.

Here is an example where a coroutine inadvertently blocks the event loop,
leading to degraded performance (While there are faster ways to find
Fibonacci numbers, we picked for demonstration purposes a method that
requires a lot of calculations.):
import asyncio 
 
 
def fibonacci(n): 
    if n <= 1: 
        return n 
    else: 
        return fibonacci(n-1) + fibonacci(n-2) 
 
 
async def fibonacci_async(n): 
    result = fibonacci(n) 
    print(f"fib({n}) = {result}") 
 
 
async def hello(): 
    print("Hello!") 
 
 
async def main(): 
    tasks = [ 
        asyncio.create_task(fibonacci_async(36)), 
        asyncio.create_task(hello()) 
    ] 
 
    await asyncio.wait(tasks) 
 
asyncio.run(main()) 
 
# fib(36) = 14930352 
# Hello!
 

Despite initiating both tasks consecutively, the second task begins only after
the Fibonacci number calculation is complete.



A straightforward approach would be to transform the Fibonacci number
calculation into a coroutine and incorporate an asyncio.sleep() statement
within the recursive section of the calculations. This allows the coroutine to
relinquish control back to the event loop periodically.
async def fibonacci(n): 
    if n <= 1: 
        return n 
    else: 
        await asyncio.sleep(0.001)  # 1ms sleep 
        f_1 = await fibonacci(n-1) 
        f_2 = await fibonacci(n-2) 
        return f_1 + f_2
 

The drawback of this method is that the calculation process is noticeably
slowed down, not only due to the delayed execution but also because it
generates a large number of new tasks for the event loop.

A much better solution for this problem is offered by asyncio, which has
the capability to delegate synchronous operations to separate threads or
processes in a thread or process executor pool.

Here is an example:
import asyncio 
from concurrent.futures import ProcessPoolExecutor 
 
 
def fibonacci(n): 
    if n <= 1: 
        return n 
    else: 
        return fibonacci(n-1) + fibonacci(n-2) 
 
 
async def fibonacci_async(n): 
    event_loop = asyncio.get_event_loop() 
 
    with ProcessPoolExecutor(max_workers=1)\ 
            as executor: 
        result = await event_loop.run_in_executor( 
            executor, fibonacci, n) 
 
        print(result) 



 
 
async def hello(): 
    print("Hello!") 
 
 
async def main(): 
 
    tasks = [ 
        asyncio.create_task(fibonacci_async(36)), 
        asyncio.create_task(hello()) 
    ] 
 
    await asyncio.wait(tasks) 
 
if __name__ == "__main__": 
    asyncio.run(main()) 
 
# Hello! 
# 14930352
 

To execute a function in an executor, you use the run_in_executor method
of the event loop. This method takes the executor pool to use, the function
to run, and any parameters for the function.

The run_in_executor method then submits the function to the executor
pool. The pool selects an idle thread or process to execute the function with
the given parameters.

Note that the run_in_executor method accepts only positional and no
keyword parameters. Additionally, you can set the parameter for the
executor pool to None, in which case the default process pool of the event
loop is used. By default, this is a thread pool, but it can be overwritten using
the set_default_executor() method of the event loop.

16.6.4 Coroutine Synchronization

While coroutines themselves don’t inherently introduce race conditions,
they often work with shared resources or perform I/O operations where
coordination is necessary to prevent conflicts. The Queue, Lock, Semaphore,



and Event provided by asyncio help manage concurrent access to shared
resources among coroutines.

Thread synchronization primitives like Lock and Semaphores block the
entire thread until they are acquired or released. If used with coroutines,
they may inadvertently block the event loop, preventing other coroutines
from executing concurrently, defeating the purpose of asynchronous
programming.

Therefore, asyncio provides its own set of synchronization primitives
tailored for coroutine-based asynchronous programming.

Here is an example rewritten for coroutines, based on the example of using
events from the thread synchronization section:
import asyncio 
 
buffer = [] 
 
item_available = asyncio.Event() 
signal_term = "Terminate" 
 
 
async def producer(): 
    for item in range(100): 
        if item % 10 == 0: 
            item_available.set() 
            await asyncio.sleep(5) 
 
        print(f"Producer: Item {item}") 
        buffer.insert(0, item) 
 
    buffer.insert(0, signal_term) 
    item_available.set() 
 
 
async def consumer(consumer_id): 
    while True: 
        if buffer: 
            item = buffer.pop() 
 
            if item == signal_term: 
                buffer.insert(0, signal_term) 
                return 
 



            print(f"Consumer {consumer_id}: Item {item}") 
            await asyncio.sleep(5) 
        else: 
            item_available.clear() 
            await item_available.wait() 
 
 
async def main(): 
    tasks = [asyncio.create_task(producer())] + [ 
        asyncio.create_task(consumer(consumer_id)) 
        for consumer_id in range(12) 
    ] 
 
    await asyncio.gather(*tasks) 
 
asyncio.run(main()) 
 
# Producer: Item 0 
# ... 
# Producer: Item 9 
# Consumer 0: Item 0 
# Consumer 1: Item 1 
# ...
 

Note that with coroutines, there is no need to protect access to the buffer list
with a lock. Unlike threads, neither the producer nor the consumer can be
interrupted during access to the list due to a preemptive scheduler in a
single-threaded process.

16.6.5 Asynchronous Context Managers

Asynchronous context managers are classes that can be used with an async
with statement.

In contrast to synchronous context managers, they must implement the
coroutines __aenter__ and __aexit__ instead of the __enter__ and
__exit__ methods.

These coroutines are awaited by the async with statement, allowing for
non-blocking execution during setup and cleanup.



Here is an example:
import asyncio 
 
 
class MyAsyncContextManager: 
 
    data = [1, 2, 3, 4, 5] 
 
    async def __aenter__(self): 
        print("__aenter__ called") 
        return self 
 
    async def __aexit__(self, exc_type, 
                        exc_value, traceback): 
        print("__aexit__ called") 
        self.data = None 
 
 
async def main(): 
    async with MyAsyncContextManager() as manager: 
        print(manager.data) 
 
asyncio.run(main()) 
 
# __aenter__ called 
# [1, 2, 3, 4, 5] 
# __aexit__ called
 



Chapter 17
HTTP Requests

Python provides several libraries for making HTTP requests, each with its
own strengths and features. One of the most commonly used libraries is
requests, which will be covered in this chapter.
Popular alternatives include urllib and http.client.

17.1 GET Requests

Making an HTTP GET request using the get function from the requests
package is quite simple.

Here is an example (Reqres.in is a REST-API service for mocking HTTP
responses used in testing and prototyping applications.):
import requests 
 
url = "https://reqres.in/api/users/1" 
 
try: 
    response = requests.get(url) 
 
    if response.ok: 
        print(f"Content Type: { 
            response.headers["content-type"]}" 
        ) 
        print(f"Contents: {response.text}") 
    else: 
        print(f"Error: {response.status_code}") 
except Exception as ex: 
    print(f"An exception occurred: {ex}") 
 
# Content Type: application/json; charset=utf-8 
# Contents: {"data":{"id":1, ...
 

The get() function of the requests module returns a Response object
containing all data retrieved from the HTTP request in a structured format.
The most important attributes of Response include:



ok Returns True if HTTP status code is less than 400, False otherwise.
status_code: The HTTP status code of the response.
headers: A dictionary containing the response headers.
text: The content of the response, in Unicode format.
content: The content of the response, in bytes.
request: An object providing information about the HTTP request
url: The URL of the response.

The get function in the requests library may raise exceptions under certain
circumstances. Here are three of the most important exceptions that the get
function may raise:

ConnectionError: Raised when a network connection error occurs, such as
a DNS resolution failure, a refused connection, or a timeout.

Timeout: Raised when the request takes longer than the specified timeout
period to complete.

TooManyRedirects: Raised when the request encounters too many
redirects.

If you want to handle responses with an HTTP status code different from
200 by raising exceptions as well, you can call the raise_for_status()
method of the Response class. This method raises a HTTPError exception if
the response status code indicates an error.

17.2 Parsing JSON Responses

The json() method of the Response class parses the content of the response
as a JSON string into a Python object using Python’s built-in json.loads()
function.

This function maps JSON data types to corresponding Python data
structures as follows:

JSON object ({}): Mapped to a Python dictionary.
JSON array ([]): Mapped to a Python list.
JSON string: Mapped to a Python string.



JSON number (integer or float): Mapped to a Python int or float.
JSON true: Mapped to Python True.
JSON false: Mapped to Python False.
JSON null: Mapped to Python None.

Here is an example:
import requests 
 
url = "https://reqres.in/api/users/1" 
 
response = requests.get(url) 
 
user_data = response.json() 
 
print( 
    user_data["data"]["first_name"], 
    user_data["data"]["last_name"], 
) 
 
# George Bluth
 

Please note that the requests package does not include built-in support for
parsing XML structured content.

Instead, you can parse XML contents using the built-in xml library, which
provides SAX and DOM interfaces for XML parsing. Alternatively, you
can utilize third-party libraries such as ElementTree.

However, detailed coverage of these parsing techniques is beyond the scope
of this book.

17.3 Reading Streamed Contents

The Response object can also be used as a context manager in a with
statement, which is useful when utilizing the iter_content() method to
read the content sent by the HTTP server in chunks. This can be particularly
helpful when downloading a large file.

Here is an example:



import requests 
 
url = "http://speedtest.tele2.net/10MB.zip" 
chunk_size = 1024 
 
with requests.get(url, stream=True) as response: 
    with open(’large_file.zip’, ’wb’) as file: 
 
        for chunk in response.iter_content( 
                chunk_size=chunk_size 
        ): 
            print(f"Read {len(chunk)} bytes") 
            file.write(chunk) 
 
# Read 1024 bytes 
# Read 1024 bytes 
# Read 1024 bytes 
# ...
 

In this example, the stream parameter of the get method is set to True to
prevent reading the entire content of the response into memory at once.
Instead, it allows the content to be iteratively read in smaller chunks using
the iter_content() method.

17.4 Using Query Parameters

To include query parameters in a GET request, you can pass them as a
dictionary to the params parameter of the get function.

Here is an example (The examples below utilize httpbin.org, a testing site
designed to mirror various HTTP requests, serving as a developer tool.):
import requests 
 
url = "https://httpbin.org/get" 
 
params = { 
    "name": "Zaphod", 
    "job": "President", 
} 
 
response = requests.get(url, params=params) 
 
print(response.request.url) 



print(response.json()["args"]) 
 
# https://httpbin.org/get?name=Zaphod&job=President 
# {’job’: ’President’, ’name’: ’Zaphod’}
 

17.5 Adding Custom Headers to Requests

Custom headers can be easily added to an HTTP request by passing a
dictionary that maps header names to their respective values as an
additional keyword parameter called headers.

Here is an example:
import requests 
 
url = "https://httpbin.org/headers" 
 
custom_headers = { 
    "User-Agent": "CustomUserAgent", 
    "Accept": "application/json", 
} 
 
response = requests.get(url, headers=custom_headers) 
 
print(response.request.headers) 
 
# {’User-Agent’: ’CustomUserAgent’, 
# ’Accept-Encoding’: ’gzip, deflate’, 
# ’Accept’: ’application/json’, 
# ’Connection’: ’keep-alive’}
 

Please note that the request contains additional headers like Accept-
Encoding that have been added by the requests package.

17.6 POST Requests

For sending an HTTP POST request, the requests package provides a
function called post().

Here is an example that sends a POST request where the body has the
format used by HTML forms:



import requests 
 
url = "https://reqres.in/api/users" 
 
data = { 
    "name": "Arthur", 
    "job": "Traveller" 
} 
 
response = requests.post(url, data=data) 
 
print(response.text) 
 
# {"name":"Arthur","job":"Traveller","id":"307" ...
 

The post() function supports various forms for the body of the request.

Here are two frequently used examples:

JSON Data: If you need to send JSON data, you can use the json
parameter. This will automatically serialize the data to JSON format.
json_data = {"key1": "value1", "key2": "value2"} 
response = requests.post(url, json=json_data)
 

Raw Data: For sending raw data in the body of the request, you can use the
data parameter with a bytes or string object.
raw_data = b"raw data" 
response = requests.post(url, data=raw_data)
 

To include a file in the body of a POST request, you can first read its
contents into a variable and then send the variable’s contents as raw data,
following the method just described.

If you want to include files to be uploaded alongside the form data in the
body of a POST request, you can utilize the files parameter. In its simplest
form the files parameter is a dictionary mapping the form names of the
files to upload to their contents in the form of an already openend file.

Here is an example:



import requests 
 
url = "http://httpbin.org/post" 
 
data = { 
    "number_of_reports": 2 
} 
 
with open("report1.csv", "rb") as file1, \ 
        open("report2.csv", "rb") as file2: 
    files = { 
        "report1": file1, 
        "report2": file2 
    } 
 
    r = requests.post(url, data=data, files=files) 
    print(r.text) 
 
# ... 
#   "files": { 
#     "report1": "John;Doe;42\r\nJane;Doe;56\r\n", 
#     "report2": "John;Doe2;42\r\nJane;Doe2;56\r\n" 
#   }, 
#   "form": { 
#     "number_of_reports": "2" 
#   }, 
# ...
 

It is possible to provide additional parameters like a different file name to
be used by the HTTP request in a tuple passed as the value of the dictionary
entries, but this aspect will not be covered here.

Also, note that the post() function does not automatically close the files.
This responsibility falls on the calling code, which is managed here using a
with statement.

To conclude this section, it is important to note that all the functionalities
described for the get() function, such as parsing JSON responses, also
apply to the post() function.

17.7 Miscellaneous Topics



In this final section of the chapter, we will cover various miscellaneous
topics related to HTTP requests.

17.7.1 Other HTTP Methods

For each of the HTTP methods DELETE, HEAD, OPTIONS, PATCH,
PUT, the requests package has a corresponding function that can be used in
the same way as the already described functions get() and post().

17.7.2 SSL Certificates

If you want to use locally stored SSL certificates with the requests library,
you can pass the path to the certificate file as the value of the cert
parameter when making the request. This parameter expects a string
representing the path to the certificate file.

17.7.3 Authentication

The requests package offers extensive support for request authentication.
However, providing an in-depth explanation of all its capabilities is beyond
the scope of this book.

Nonetheless, here is a brief overview of the authentication possibilities:

To perform simple authentication in requests, you can utilize the auth
parameter, which accepts a tuple containing the username and password.

You can enable Digest Authentication by passing the auth parameter with
an instance of the HTTPDigestAuth class initialized with a username and
password. This class is available in the requests.auth module.

OAuth2 is not directly supported by the requests package. However, there
are other packages that provide OAuth2 support. For example,
requests_oauthlib is a specific package that integrates OAuth support
into the requests package, enabling developers to perform OAuth2
authentication using the familiar requests API. This package builds upon
OAuthLib, handling OAuth-related tasks within the context of requests.



17.7.4 Coroutine Support

If you want to make HTTP requests within coroutines, it is crucial to
perform the requests asynchronously to avoid blocking the event loop.

While using a thread or process executor is one approach, a more
appropriate solution is to use asynchronous HTTP client libraries like
aiohttp, which are designed for asynchronous programming and integrate
seamlessly with asyncio.

Describing the functionality of aiohttp is beyond the scope of this book,
but here is a short example that shows the basic functionality.

Please note that it uses async with statements, which ensure that the
session and response created by the coroutine are automatically closed at
the end.
import aiohttp 
import asyncio 
 
url = "https://reqres.in/api/users/1" 
 
 
async def fetch_data(): 
    async with aiohttp.ClientSession() as session: 
        async with session.get(url) as response: 
            return await response.text() 
 
 
async def main(): 
    data = await fetch_data() 
    print(data) 
 
asyncio.run(main()) 
 
# {"data":{"id":1, ...
 



Chapter 18
Type Hinting

In Python, type hinting is a technique used to annotate code with
information about the expected types of variables, function parameters, and
return values. While Python is a dynamically typed language, meaning that
variables do not have fixed types, type hinting allows developers to provide
hints about the intended types of data used in their programs.
Using type hinting in Python is optional, but it can be beneficial in projects
of all sizes, especially in large and complex codebases.

For instance, integrated development environments like IntelliJ IDEA offer
seamless on-the-fly checks for type hint violations as code is being written.
This immediate feedback loop aids in maintaining adherence to type hints,
enhancing code quality and reliability.

Moreover, tools such as MyPy, though not explored within this book,
facilitate static analysis of program code, diligently detecting deviations
from specified type hints.

18.1 Basic Type Hinting

Type hinting in Python does use a different syntax compared to Java
declarations but shares similarities. In Python, type hints are specified using
: to denote types and -> to indicate return types in function signatures.

Python supports various types and annotations, including built-in types such
as int, float, str, bool, as well as more complex types like lists, tuples,
dictionaries, and custom classes.

Here is an example:
from typing import List, Tuple, Dict, Any 
 
 
def add(a: int, b: int) -> int: 
    return a + b 
 
 



def create_tuple() -> Tuple[str, int]: 
    name: str = "John" 
    age: int = 30 
    return name, age 
 
 
def to_string(data: List[Any]) -> List[str]: 
    return [str(x) for x in data] 
 
 
def to_dict(*data: int) -> Dict[str, int]: 
    result: Dict[str, Any] = {} 
 
    for i, num in enumerate(data): 
        result[f"#{i}"] = num 
    return result 
 
 
def print_kw_args(**kwargs: float): 
    for key in kwargs: 
        print(f"{key}: {kwargs[key]}") 
 
 
class Point: 
    def __init__(self, x: float, y: float): 
        self.x: float = x 
        self.y: float = y 
 
 
my_int: int = 5 
my_float: float = 3.14 
my_string: str = "Hello" 
is_valid: bool = True 
my_point: Point = Point(2.5, 4.7) 
 
 
addition: int = add(3, 4) 
my_list: List[str] = to_string( 
    [42, "Hello World", True]) 
my_dict: Dict[str, int] = to_dict(1, 2, 3) 
my_tuple: Tuple[str, int] = create_tuple() 
 
print(addition)  # 7 
print(my_list)  # [’42’, ’Hello World’, ’True’] 
print(my_dict)  # {’#0’: 1, ’#1’: 2, ’#2’: 3} 
print(my_tuple)  # (’John’, 30) 
 
print_kw_args(x=1.1, y=2.2, z=3.3) 



# x: 1.1 
# y: 2.2 
# z: 3.3
 

Type aliases, usually written in CamelCase, provide descriptive names for
complex types or combinations of types, thereby improving code
readability.
from typing import List, Tuple 
 
FirstName = str 
LastName = str 
UserName = Tuple[FirstName, LastName] 
 
 
def print_first_names(*names: UserName): 
    for name in names: 
        print(name[0]) 
 
 
print_first_names(("John", "Doe"), ("Jane", "Doe")) 
 
# John 
# Jane
 

18.2 Advanced Type Hinting

18.2.1 Union Types

Union types allow you to specify that a variable can accept values of
multiple types. This is useful when a variable or function parameter can
have different types under different circumstances.

Union types are either expressed using the Union type constructor from the
typing module or by using parentheses.
from typing import Union 
 
 
def square_root_1( 
        x: Union[int, float] 
) -> float: 



    return x ** 0.5 
 
 
def square_root_2( 
        x: (int, float) 
) -> float: 
    return x ** 0.5 
 
 
assert square_root_1(2) == square_root_2(2.0)
 

18.2.2 Optional Types

Optional types indicate that a variable or function parameter can be of a
specified type or None. This is helpful when dealing with optional values,
such as function arguments that may be provided or omitted.

Optional types are represented using the Optional type constructor from
the typing module.
from typing import Optional 
 
 
def greet(name: Optional[str]) -> str: 
    if name is None: 
        return "Hello, Guest!" 
    else: 
        return f"Hello, {name}!" 
 
 
print(greet(None))  # Hello, Guest! 
 
print(greet("Arthur"))  # Hello, Arthur!
 

18.2.3 Generics

Similar to Java, creating a generic class, method, or function in Python by
attaching a type variable serves to introduce a placeholder for a type within
the context of that construct. This enables you to write generic code capable
of operating on various types while upholding type safety. In Python,
generics can be specified by defining a type variable between []:



from typing import List, Optional 
 
 
def first_element[T](items: List[T]) -> Optional[T]: 
    if items: 
        return items[0] 
    else: 
        return None 
 
 
x: int = first_element([1, 2, 3, 4, 5]) 
 
y: float = first_element([1.1, 2.2, 3.3, 4.4, 5.5])
 

It is also possible to constrain the type variable to a specific type or a union
type:
class Point[T: (int, float)]: 
    def __init__(self, x: T, y: T): 
        self.x: T = x 
        self.y: T = y 
 
 
class Vector[T: Point]: 
    def __init__(self, point_1: T, point_2: T): 
        self.point_1: T = point_1 
        self.point_2: T = point_2 
 
 
my_point_1: Point = Point(1.1, 2.2) 
my_point_2: Point = Point(3.3, 4.4) 
 
my_vector: Vector = Vector(my_point_1, my_point_2)
 

Type variables with constraints can be made reusable by utilizing the
TypeVar constructor from the typing module:
from typing import TypeVar 
 
Numeric = TypeVar("Numeric", int, float) 
 
 
def square(x: Numeric) -> Numeric: 
    return x*x 
 



 
def cube(x: Numeric) -> Numeric: 
    return x*x*x 
 
 
print(square(2))  # 4 
 
print(cube(3.3))  # 35.937
 

Please note that the first parameter of the TypeVar constructor must be
identical to the name of the variable to which the result is assigned.

Finally, it is also possible to constrain a type variable to a single class or its
subclasses:
from typing import TypeVar 
 
 
class MyClass[T: (float, int)]: 
    def __init__(self, value: T): 
        self.value: T = value 
 
 
class MySubclass(MyClass[int]): 
    pass 
 
 
T = TypeVar("T", bound=MyClass) 
 
 
def print_value(x: T): 
    print(x.value) 
 
 
my_sub_class: T = MySubclass(42) 
 
print_value(my_sub_class)  # 42
 



Chapter 19
Meta-Programming

Meta-programming is a programming technique where programs have the
ability to manipulate or generate other code during runtime.
While Java’s meta-programming capabilities are primarily limited to
reflection and annotations, Python offers a wider range of powerful
concepts and features for meta-programming.

Some of the key concepts and techniques available in Python will be
explained in this chapter.

19.1 Dynamic Code Execution

Python provides two built-in functions, exec() and eval(), that enable
dynamic code generation and execution at runtime.

The exec() function allows you to execute dynamically generated Python
code.

Here is an example:
code = """ 
def greet(name): 
    print(f"Hello {name}!") 
""" 
 
exec(code) 
 
greet("Alice")  # Hello Alice!
 

The eval() function evaluates dynamically generated Python expressions
stored in a string and returns the result.

Here is an example:
expression = "3 + 5 * 2" 
 
result = eval(expression) 



print(result)  # 13
 

Note that it is also possible to generate code objects from strings or other
sources using the built-in compile() function, which can then be
dynamically executed using exec() or eval(). Code objects are the
intermediate, byte-compiled representations of Python code. They can be
executed or evaluated, but not modified. However, this topic will not be
covered here.

19.2 Decorators

Decorators in Python are higher-order functions that modify or enhance the
behavior of other functions or methods.

In comparison to Java’s annotations, which provide metadata about classes,
methods, and other program elements, Python decorators directly modify
the behavior of functions or methods.

While annotations in Java are primarily used for documentation and
compile-time processing, decorators in Python are executed at runtime and
can dynamically alter the behavior of functions.

Decorators are typically applied using the @decorator_name syntax directly
above the function or method definition.

They take that function as input and return a modified or enhanced version
of it. Additionally, they can perform actions before or after calling the
original function, modify its arguments or return value, or even replace the
original function entirely with a new implementation.

A decorator is invoked when the function or method it decorates is defined,
not when it is called or invoked.

During the decoration process, the decorated function is replaced with the
return value of the decorator. This occurs when the module containing the
decorated function is loaded into memory.



Here is an example:
def log_function(func): 
    def wrapper(*args, **kwargs): 
        print(f"Function {func.__name__} called.") 
        print(f"args: {args}") 
        print(f"kwargs: {kwargs}") 
 
        result = func(*args, **kwargs) 
 
        print(f"Return value: {result}") 
 
        return result 
 
    return wrapper 
 
 
@log_function 
def add(a, b): 
    return a + b 
 
 
addition = add(3, b=5) 
# Function add called. 
# args: (3,) 
# kwargs: {’b’: 5} 
# Return value: 8
 

Decorators in Python can accept parameters. When a decorator has
parameters, it essentially becomes a function that returns another function,
which acts as the actual decorator.

This means the function is first called with the value for the parameter, and
then the returned decorator is applied to the decorated function or method.

Here is an example:
def repeat(n): 
 
    def decorator(func): 
        def wrapper(*args, **kwargs): 
            for _ in range(n): 
                result = func(*args, **kwargs) 
            return result 
        return wrapper 



 
    return decorator 
 
 
@repeat(n=3) 
def greet(name): 
    print(f"Hello {name}!") 
 
 
greet("Alice") 
# Hello Alice! 
# Hello Alice! 
# Hello Alice!
 

Alongside function decorators, there are also class decorators. These
functions take a class as input and return a modified or enhanced version of
that class.

Here is an example:
def add_x(cls): 
 
    def init(self, value): 
        self.x = value 
 
    def print_x(self): 
        print(self.x) 
 
    cls.__init__ = init 
    cls.print_x = print_x 
 
    return cls 
 
 
@add_x 
class MyClass: 
    pass 
 
 
obj = MyClass(42) 
obj.print_x()  # 42
 

As a final note on decorators, it is worth mentioning that, similar to Java’s
annotations, decorators in Python can be nested by stacking them above the



decorated function.

When nested, decorators are applied from the bottom up, meaning that the
one closest to the function definition is applied first. Subsequently, the
output function of one decorator becomes the input function of the next
decorator.

19.3 Special Methods

Python provides a rich set of special methods, also known as "magic
methods" or "dunder methods," that allow developers to customize the
behavior of objects and classes.

These methods are invoked by the Python interpreter in response to specific
operations or expressions involving objects. By implementing these
methods, you can define custom behavior tailored to your classes and
objects.

Due to space constraints, only a limited number of examples for special
methods are provided in this book, showcasing their versatility in
customizing object behavior.

19.3.1 Arithmetic Operations

Functions like __add__, __sub__, __mul__, and others help objects perform
basic math operations like addition, subtraction, and multiplication.
Similarly, methods such as __iadd__ (for +=), __isub__ (for -=) and
__imul__ (for *=) enable objects to support in-place operations.

Here is an example:
class Vector: 
    def __init__(self, *args): 
        self.__vector = args 
 
    def __add__(self, other): 
        return Vector(*self.__add_tuples(other)) 
 
    def __iadd__(self, other): 
        self.__vector = self.__add_tuples(other) 



        return self 
 
    def __str__(self): 
        return str(self.__vector) 
 
    def __add_tuples(self, other): 
        if isinstance(other, Vector): 
            x = self.__vector 
            y = other.__vector 
            if len(x) == len(y): 
                addition = tuple( 
                    x[i] + y[i] 
                    for i in range(len(x)) 
                ) 
 
                return addition 
            else: 
                raise ValueError("Not same length") 
        else: 
            raise ValueError("Not a vector") 
 
 
v1 = Vector(1, 2, 3) 
v2 = Vector(4, 5, 6) 
 
result = v1 + v2 
print(str(result))  # (5, 7, 9) 
 
v1 += Vector(8, 9, 10) 
print(str(v1))  # (9, 11, 13)
 

19.3.2 Object Comparison

In Python, you can customize the default behavior of comparison operators
such as ==, <=, !=, etc., by overriding the corresponding special methods:

__eq__(self, other): Equality (==)
__ne__(self, other): Inequality (!=)
__lt__(self, other): Less than (<)
__le__(self, other): Less than or equal to (<=)
__gt__(self, other): Greater than (>)
__ge__(self, other): Greater than or equal to (>=)



The only operators that are implemented for all classes in Python are == and
!=.

== by default checks if the two objects are the same instance. If != is not
defined for a class, it is automatically derived from __eq__ by inverting its
result. If __eq__ returns True, __ne__ will return False, and vice versa.

Therefore, it is usually sufficient to override only __eq__.

If you try to use the other operators (<, <=, >, >=) on an object of a class that
does not implement the corresponding special methods, Python will raise a
TypeError.

Python is able to replace any of these operators by deriving it from its
reverse operator. For example, it can replace a <= b with b >= a, but it
cannot combine operators, such as replacing a <= b with a < b or a == b.

The following example shows a minimum set of special methods that need
to be defined so that all comparison operators work:
class Point: 
    def __init__(self, x, y): 
        self.x = x 
        self.y = y 
 
    def __eq__(self, other): 
        return ( 
            self.x == other.x and self.y == other.y 
        ) 
 
    def __lt__(self, other): 
        return ( 
            self.x < other.x and self.y < other.y 
        ) 
 
    def __le__(self, other): 
        return ( 
            self.x <= other.x and self.y <= other.y 
        ) 
 
    def __hash__(self): 
        return hash((self.x, self.y)) 
 
 



point1 = Point(2, 3) 
point2 = Point(5, 7) 
point3 = Point(2, 3) 
 
print(point1 == point3)  # True 
print(point1 <= point3)  # True 
print(hash(point1) == hash(point3))  # True 
 
print(point1 == point2)  # False 
print(point1 < point2)  # True 
print(point2 >= point3)  # True
                                                             
                                                             
 

As demonstrated in the example above, it is a good practice in Python,
similar to Java, to override the __hash__ function if you have overridden
the __eq__ operator. You can use the built-in hash() function to compute a
hash value.

The hash() function can handle only immutable types of objects.
Immutable types are those whose state cannot be modified after creation.
Examples of immutable types include integers, floats, strings, tuples, and
frozensets.

Mutable types, such as lists, dictionaries, and sets, cannot be hashed directly
because their state can change after creation.

19.3.3 Attribute Access

The __getattr__ method is invoked when an attribute is accessed but not
found. It can either raise an exception or return a value as the result of the
attribute access.

The __setattr__ method is invoked when an attribute is set. It can then set
the attribute by calling the __setattr__ method of its superclass. Directly
setting the attribute within __setattr__ is not possible as this would call
__setattr__ again, resulting in an infinite recursion loop.

Here is an example:



class MyClass: 
    def __getattr__(self, name): 
        return f"{name} not found" 
 
    def __setattr__(self, name, value): 
        print(f"{name} set to {value}") 
        super().__setattr__(name, value) 
 
 
obj = MyClass() 
print(obj.unknown_attr)  # unknown_attr not found 
obj.my_attr = 42  # my_attr set to 42
 

19.3.4 Indexing Protocol

In Python, protocols define a set of methods or attributes that objects can
implement to achieve a specific interaction or behavior. They provide a
flexible way to establish contracts between different parts of a program
without relying on inheritance.

Protocols are not explicitly enforced by the language but serve as informal
agreements or conventions. (Please note that the Python standard PEP 544
introduces a more formal approach to protocols in Python. It introduces the
concept of protocol classes, which are abstract base classes that specify the
expected methods and attributes of objects that conform to a particular
protocol. However, this formalization of protocols will not be discussed in
this book.)

In contrast, Java uses interfaces to achieve similar goals. Interfaces define a
set of methods that classes must implement to adhere to a certain behavior
or functionality.

While the terminology differs, the underlying concept of defining contracts
for classes to follow remains consistent between Python’s protocols and
Java’s interfaces.

Some examples of Python protocols include the iteration protocol (defined
by the __iter__ and __next__ methods), the context management protocol
(defined by the __enter__ and __exit__ methods), and the comparison



protocol (defined by methods like __eq__, __lt__, etc.). In the following
section, we will explore the indexing protocol in Python, which allows
objects to customize their behavior for indexing operations such as
accessing elements using square brackets ([]).

The indexing protocol consists of several special functions:

__getitem__(self, key): Called when an item is accessed using square
brackets. It takes a key as an argument and returns the corresponding value.

__setitem__(self, key, value): Called when an item is assigned a value
using square brackets. It takes a key and a value as arguments and sets the
value at the specified key.

__delitem__(self, key): Called when an item is deleted using the del
statement with square brackets. It takes a key as an argument and removes
the item at the specified key.

__iter__(self): Called when an object is iterated over using a loop or
other iterable context. It returns an iterator object that allows sequential
access to the elements of the object.

__contains__(self, item): Called when the in operator is used to check
for membership in the object. It takes an item as an argument and returns
True if the item is found in the object, False otherwise.

__len__(self): Called when the built-in len() function is used to
determine the length of the object. It returns the number of items in the
object.

In this example, all these methods are used to create an "array" that can
handle assignments and access with lists of array indices:
class CustomArray: 
    def __init__(self, size): 
        self.__size = size 
        self.__content = [None for i in range(size)] 
 
    def print(self): 
        print(self.__content) 
 



    def __getitem__(self, key): 
        if isinstance(key, tuple): 
            return tuple( 
                self.__content[i] for i in key 
            ) 
        else: 
            return self.__content[key] 
 
    def __setitem__(self, key, value): 
        if isinstance(key, tuple): 
            for i in key: 
                self.__content[i] = value 
        else: 
            self.__content[key] = value 
 
    def __delitem__(self, key): 
        if isinstance(key, tuple): 
            for i in key: 
                self.__content[i] = None 
        else: 
            self.__content[key] = None 
 
    def __iter__(self): 
        return iter(self.__content) 
 
    def __contains__(self, item): 
        return item in self.__content 
 
    def __len__(self): 
        return self.__size 
 
 
my_array = CustomArray(5) 
my_array.print()  # [None, None, None, None, None] 
print(len(my_array))  # 5 
 
my_array[0, 1, 2] = 42 
my_array.print()  # [42, 42, 42, None, None] 
 
my_array[0] = 1 
my_array.print()  # [1, 42, 42, None, None] 
 
print(my_array[3, 2, 1])  # (None, 42, 42) 
print(my_array[1])  # 42 
 
for j in my_array: 
    print(j) 
# 1 42 42 None None 



 
print(42 in my_array)  # True 
print(69 in my_array)  # False 
 
del my_array[1, 2] 
my_array.print()  # [1, None, None, None, None] 
 
del my_array[0] 
my_array.print()  # [None, None, None, None, None]
 

19.3.5 __new__ and __call__

In Python, __new__ and __call__ are two powerful special methods that
play crucial roles in object creation and instance behavior.

__new__ is a class method responsible for creating a new instance of a class.
It receives the arguments of the class constructor call and must return a new
instance of the class. It is typically used in scenarios where immutable
objects need to be initialized or when subclassing immutable types like int
or tuple, as in these cases the already created object cannot be changed in
the __init__ method anymore.

Here is an example:
class TupleWithHash(tuple): 
    def __new__(cls, *args): 
        new_tuple = args + (hash(args),) 
 
        return super().__new__(cls, new_tuple) 
 
 
my_tuple = TupleWithHash(1, 2, 3, 4, 5) 
 
print(my_tuple) 
# (1, 2, 3, 4, 5, -5659871693760987716)
 

The __call__ method allows an instance of a class to be called as if it were
a function:
class Multiplier: 
    def __init__(self, factor): 
        self.__factor = factor 



 
    def __call__(self, value): 
        return value * self.__factor 
 
 
double = Multiplier(2) 
print(double(5))  # 10
 

19.4 Metaclasses

Metaclasses are classes whose instances are classes. They are constructs
that Python uses to create class objects and instances, dictating how they are
constructed and initialized.

The only metaclass that comes built-in with Python is type. It is the
metaclass that Python uses by default to create new class objects.

In addition, you can define your own metaclasses to customize the class
creation process. This allows you, for example, to automatically add or
modify class attributes and methods, or to ensure that classes meet certain
criteria, such as having specific attributes or methods.

Interestingly, the metaclass of type itself is type. This self-referential
property illustrates the recursive nature of Python’s type system, where type
is both an instance and a subclass of itself.

In the following sections, we will explore how to define custom
metaclasses, how they interact with the class creation process, and the role
they play when creating an instance of a class.

19.4.1 Defining Metaclasses

When creating your own metaclass, it is generally recommended to inherit
from type. This is because type is the default metaclass and provides the
necessary infrastructure to create classes.

A metaclass is an ordinary class whose constructor parameters are as
follows:



cls: The newly created class.
name: The name of the class being created.
bases: A tuple containing the base classes of the class being created.
attr: A dictionary mapping the names of the attributes and methods of
the class being created to their values.

Here is an example of a metaclass that adds a version number to every class
created with this metaclass:
class MyMetaClass(type): 
    version = "1.0" 
 
    def __init__(cls, name, bases, attr): 
        attr["version"] = MyMetaClass.version 
        super().__init__(name, bases, attr) 
 
 
class MyClass(metaclass=MyMetaClass): 
    x = 42 
 
 
print(MyClass.version)  # 1 
print(MyClass.x)  # 42
 

It is also possible to instantiate the metaclass directly. For example, the
definition of MyClass in the example above could be accomplished like this:
MyClass = MyMetaClass( 
    "MyClass", 
    (object,), 
    {"x": 42} 
)
 

However, the resulting class is not identical. In the original example, the
Python interpreter automatically adds attributes like __module__, containing
the module name, which does not occur when the metaclass is instantiated
directly.

19.4.2 Intercepting Object Creation



In Python, creating an instance of a class is essentially equivalent to
invoking the __call__ method of the class’s metaclass.

The default __call__ method of the built-in metaclass type is responsible
for creating instances of classes.

When you call a class object, the __call__ method of type is invoked
behind the scenes, which in turn invokes the __new__ and __init__
methods of the class to create and initialize the instance.

This mechanism allows you to intercept the creation of class instances by
defining a custom __call__ method in a metaclass.

Here is an example implementing a singleton pattern:
class SingletonMeta(type): 
    __instances = {} 
 
    def __call__(cls, *args, **kwargs): 
        if cls not in SingletonMeta.__instances: 
            ins = super().__call__(*args, **kwargs) 
            SingletonMeta.__instances[cls] = ins 
 
        return SingletonMeta.__instances[cls] 
 
 
class SingletonClass(metaclass=SingletonMeta): 
    def __init__(self, value): 
        self.value = value 
 
 
singleton1 = SingletonClass(10) 
singleton2 = SingletonClass(20) 
 
print(singleton1.value)  # 10 
print(singleton2.value)  # 10 
print(singleton1 is singleton2)  # True
 

19.5 Class and Object Introspection

As in Java, Python provides built-in functions and modules like inspect
that allow introspection of classes and objects at runtime.



Introspection enables developers to examine the structure, attributes, and
methods of classes and objects dynamically, facilitating tasks like runtime
debugging, documentation generation, and dynamic code generation.

19.5.1 Built-in Functions for Introspection

Python includes several built-in functions that are particularly useful for
introspection:

type(obj): Returns the class that the object is an instance of.

dir(obj): Returns a list of the attributes and methods of an object.

getattr(obj, name[, default]): Returns the value of the named
attribute of an object. If the attribute is not found, the default value is
returned if provided; otherwise, an AttributeError is raised.

hasattr(obj, name): Checks if the object has the named attribute.

setattr(obj, name, value): Sets the named attribute on the object to the
specified value.

delattr(object, name): Deletes the named attribute from the object.

isinstance(obj, class): Checks if an object is an instance or subclass of
a class.

issubclass(subclass, class): Checks if a class is a subclass of another
class.

Here is an example:
class MyClass: 
    def __init__(self, x, y): 
        self.x = x 
        self.y = y 
 
 
class MySubClass(MyClass): 
    def __init__(self, x, y, z): 
        super().__init__(x,y) 



        self.z = z 
 
 
my_subclass = MySubClass(1, 2, 3) 
 
print(type(my_subclass)) 
# <class ’__main__.MySubClass’> 
 
print(dir(my_subclass)) 
# [’__class__’, ’__delattr__’, ... ’x’, ’y’, ’z’] 
 
print(getattr(my_subclass, "x"))  # 1 
print(hasattr(my_subclass, "z"))  # True 
 
setattr(my_subclass, "has_towel", True) 
print(my_subclass.has_towel)  # True 
 
delattr(my_subclass, "has_towel") 
print(hasattr(my_subclass, "has_towel"))  # False 
 
print(isinstance(my_subclass, MyClass))  # True 
print(issubclass(MySubClass, MyClass))  # True
 

Please note that the dir() function does not show all attributes of an object.
It lists most of the attributes and methods associated with an object but may
exclude certain special or dynamically added attributes.

Here is an example:
class MyClass: 
    def __getattr__(self, name): 
        if name == "dyn_attr": 
            return "Dynamic Attribute" 
        raise AttributeError(f"{name} not found") 
 
 
obj = MyClass() 
 
print(obj.dyn_attr)  # Dynamic Attribute 
 
print(dir(obj))  # List does not contain dyn_attr
 

19.5.2 The inspect Module



The inspect module in Python, much like Java’s reflection API, enables
you to examine the structure and members of an object.

Explaining the complete functionality provided by this module would be
beyond the scope of this book. Instead, here are two examples
demonstrating frequently occurring tasks.

Logging Method Calls

This example shows how to automatically add logging to every method call
of an object. Automatically wrapping methods can be generally useful when
writing test code.
import inspect 
 
 
def add_logging(obj): 
    for name, value in inspect.getmembers( 
            obj, inspect.ismethod): 
        setattr(obj, name, add_logger(value)) 
 
 
def add_logger(meth): 
    def wrapper(*args, **kwargs): 
        print(f"*** Calling method: {meth.__name__}") 
        return meth(*args, **kwargs) 
    return wrapper 
 
 
class MyClass: 
 
    def __init__(self, value): 
        self.value = value 
 
    def print_value(self): 
        print(f"value = {self.value}") 
 
 
my_object = MyClass(42) 
add_logging(my_object) 
 
my_object.print_value() 
# *** Calling method: print_value 
# value = 42
 



The function inspect.getmembers() retrieves all the members of an
object. The object can be an instance, a class, a module, or any other type of
object in Python. A member can be a method, attribute, property, or any
other type of member that an object can have.

inspect.getmembers() returns a list of tuples, where each tuple contains
two elements: the name of the member and the value of the member.

inspect.getmembers() takes as parameters the object to be inspected and,
optionally, a predicate function that filters the members.

inspect.ismethod() is a predicate function that returns True if its
parameter is a bound method.

The inspect module provides other predicate functions like

inspect.isfunction() for functions
inspect.isbuiltin() for built-in functions such as __new__().

Mock Creation

This example demonstrates how to create a mock for a class by replacing all
methods with a dummy method. It returns values based on the return type
hint: 0 for int, False for bool, an empty string for str, and None for other
types.
import inspect 
 
 
def mock(cls): 
    methods = {} 
 
    for key, value in inspect.getmembers( 
            cls, inspect.isfunction): 
        methods[key] = mock_method(value) 
 
    methods["__init__"] = lambda x: None 
 
    mock_class = type( 
        f"{cls.__name__}_mock", 
        (cls,), 
        methods 



    ) 
 
    return mock_class() 
 
 
def mock_method(method): 
    signature = inspect.signature(method) 
    return_annotation = signature.return_annotation 
 
    def mocked_method(*args, **kwargs): 
        signature.bind(*args, **kwargs) 
 
        if return_annotation == int: 
            return 0 
        elif return_annotation == bool: 
            return False 
        elif return_annotation == str: 
            return "" 
        elif return_annotation is not None: 
            return None 
 
    return mocked_method 
 
 
class MyClass: 
 
    def __init__(self, value): 
        self.value = value 
 
    def add(self, second_value) -> int: 
        self.value += second_value 
        return self.value 
 
    def is_positive(self) -> bool: 
        return self.value > 0 
 
    def as_tuple(self) -> tuple: 
        return (self.value,) 
 
    def __str__(self) -> str: 
        return f"Value: {self.value}" 
 
 
obj = MyClass(42) 
mocked_obj = mock(MyClass) 
 
print(obj.__class__) 
# <class ’__main__.MyClass’> 



 
print(mocked_obj.__class__) 
# <class ’__main__.MyClass_mock’> 
 
print(isinstance(mocked_obj, MyClass))  # True 
 
print(obj.is_positive())  # True 
print(mocked_obj.is_positive())  # False 
 
print(obj.as_tuple())  # (42,) 
print(mocked_obj.as_tuple())  # None 
 
print(obj.add(1))  # 43 
print(mocked_obj.add(1))  # 0 
 
print(obj)  # Value: 43 
print(mocked_obj)  # <empty string>
 

The mock() function takes a class object as an argument and creates a mock
for that class. It does so by generating a subclass of the given class, where
all methods of the parent class are overridden with mocked methods. The
function then returns an instance of this subclass.

Here are a few points in this code that are worth explaining in detail:

The expression

inspect.getmembers(cls, inspect.isfunction)

returns all the methods of the class and its superclasses. The filter function
used here is inspect.isfunction() instead of inspect.ismethod(),
because methods are bound to an instance of a class, not to the class itself.

The statement

methods["__init__"] = lambda x: None

creates a constructor for the mock class that does nothing. This allows the
mock() function to create an instance of the mock class using a
parameterless constructor.



The inspect.signature() function returns a complex object that describes
the signature of a method or function.

Its main components include a list of objects describing the parameters of
the signature (signature.parameters) and, if specified by a type hint, the
expected return type of the method or function
(signature.return_annotation).

In the example above, signature.bind() is used to test whether a mock
method is called with the correct parameters. This ensures that the mock
implementation faithfully mimics the interface of the original method.

For instance, in the example above, calling the add() method of
mocked_obj without arguments would cause signature.bind() to raise a
TypeError.

More generally, the signature.bind() function returns a BoundArguments
object, which represents the mapping between the passed arguments and the
function’s parameters.

This complex object contains several attributes, among them arguments, an
OrderedDict (a dictionary where the keys maintain their order) that maps
the parameter names of the original signature to the passed arguments.

By using .apply_defaults() on the BoundArguments object, it is also
possible to fill in any missing arguments with their default values from the
signature.

Here is an example:
import inspect 
 
 
def my_method(x, y, z=42): 
    pass 
 
 
my_signature = inspect.signature(my_method) 
 
bound_args = my_signature.bind(1, y=2) 
print(bound_args.arguments) 



# {’x’: 1, ’y’: 2} 
 
bound_args.apply_defaults() 
print(bound_args.arguments) 
# {’x’: 1, ’y’: 2, ’z’: 42}
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