[image: First Edition]
Understanding and Using C Pointers

Richard Reese

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Preface

C is an important language and has had extensive treatment over the
 years. Central to the language are pointers that provide much of the
 flexibility and power found in the language. It provides the mechanism to
 dynamically manipulate memory, enhances support for data structures, and
 enables access to hardware. This power and flexibility comes with a price:
 pointers can be difficult to master.
Why This Book Is Different

Numerous books have been written about C. They usually offer a broad
 coverage of the language while addressing pointers only to the extent
 necessary for the topic at hand. Rarely do they venture beyond a basic
 treatment of pointers and most give only cursory coverage of the important
 memory management technology involving the stack and the heap. Yet without
 this discussion, only an incomplete understanding of pointers can be
 obtained. The stack and heap are areas of memory used to support functions
 and dynamic memory allocation, respectively.
Pointers are complex enough to deserve more in-depth treatment. This
 book provides that treatment by focusing on pointers to convey a deeper
 understanding of C. Part of this understanding requires a working
 knowledge of the program stack and heap along with the use of pointers in
 this context. Any area of knowledge can be understood at varying degrees,
 ranging from a cursory overview to an in-depth, intuitive understanding.
 That higher level of understanding for C can only be achieved with a solid
 understanding of pointers and the management of memory.

The Approach

Programming is concerned with manipulating data that is normally
 located in memory. It follows that a better understanding of how C manages
 memory will provide insight that translates to better programming. While
 it is one thing to know that the malloc function
 allocates memory from the heap, it is another thing to understand the
 implications of this allocation. If
 we allocate a structure whose logical size is 45, we may be surprised to
 learn that more than 45 bytes are typically allocated and the memory
 allocated may be fragmented.
When a function is called, a stack frame is created and pushed onto
 the program stack. Understanding stack frames and the program stack will
 clarify the concepts of passing by value and passing by pointer. While not
 necessarily directly related to pointers, the understanding of stack
 frames also explains how recursion works.
To facilitate the understanding of pointers and memory management
 techniques, various memory models will be presented. These range from a
 simple linear representation of memory to more complex diagrams that
 illustrate the state of the program stack and heap for a specific example.
 Code displayed on a screen or in a book is a static representation of a
 dynamic program. The abstract nature of this representation is a major
 stumbling block to understanding a program’s behavior. Memory models go a
 long way to helping bridge this gap.

Audience

The C language is a block structured language whose procedural
 aspects are shared with most modern languages such as C++ and Java. They
 all use a program stack and heap. They all use pointers, which are often
 disguised as references. We assume that you have a minimal understanding
 of C. If you are learning C, then this book will provide you with a more
 comprehensive treatment of pointers and memory than is found in other
 books. It will expand your knowledge base regarding C and highlight
 unfamiliar aspects of C. If you are a more experienced C or C++
 programmer, this book will help you fill in possible gaps regarding C and
 will enhance your understanding of how they work “under the hood,” thus
 making you a better programmer. If you are a C# or Java developer, this
 book will help you better understand C and provide you with insight into
 how object-oriented languages deal with the stack and the heap.

Organization

The book is organized along traditional topics such as arrays,
 structures, and functions. However, each chapter focuses on the use of
 pointers and how memory is managed. For example, passing and returning
 pointers to and from functions are covered, and we also depict their use
 as part of stack frames and how they reference memory in the heap.
	Chapter 1, Introduction
	This chapter covers pointer basics for those who are not
 necessarily proficient or are new to pointers. This includes pointer
 operators and the declaration of different types of pointers such as
 constant pointers, function pointers, and the use of
 NULL and its closely related variations. This can
 have a significant impact on how memory is allocated and
 used.

	Chapter 2, Dynamic Memory Management in C
	Dynamic memory allocation is the subject of Chapter 2. The standard memory
 allocation functions are covered along with techniques for dealing
 with the deallocation of memory. Effective memory deallocation is
 critical to most applications, and failure to adequately address
 this activity can result in memory leaks and dangling pointers.
 Alternative deallocation techniques, including garbage collection
 and exception handlers, are presented.

	Chapter 3, Pointers and Functions
	Functions provide the building blocks for an application’s
 code. However, passing or returning data to and from functions can
 be confusing to new developers. This chapter covers techniques for
 passing data, along with common pitfalls that occur when returning
 information by pointers. This is followed by extensive treatment of
 function pointers. These types of pointers provide yet another level
 of control and flexibility that can be used to enhance a
 program.

	Chapter 4, Pointers and Arrays
	While array notation and pointer notation are not completely
 interchangeable, they are closely related. This chapter covers
 single and multidimensional arrays and how pointers are used with
 them. In particular, passing arrays and the various nuisances
 involved in dynamically allocating arrays in both a contiguous and a
 noncontiguous manner are explained and illustrated with different
 memory models.

	Chapter 5, Pointers and Strings
	Strings are an important component of many applications. This
 chapter addresses the fundamentals of strings and their manipulation
 with pointers. The literal pool and its impact on pointers is
 another often neglected feature of C. Illustrations are provided to
 explain and illuminate this topic.

	Chapter 6, Pointers and Structures
	Structures provide a very useful way of ordering and
 manipulating data. Pointers enhance the utility of structures by
 providing more flexibility in how they can be constructed. This
 chapter presents the basics of structures as they relate to memory
 allocation and pointers, followed by examples of how they can be
 used with various data structures.

	Chapter 7, Security Issues and the Improper Use of Pointers
	As powerful and useful as pointers can be, they are also the
 source of many security problems. In this chapter, we examine the
 fundamental problems surrounding buffer overflow and related pointer
 issues. Techniques for mitigating many of these problems are
 presented.

	Chapter 8, Odds and Ends
	The last chapter addresses other pointer techniques and
 issues. While C is not an object-oriented language, many aspects of
 object-oriented programming can be incorporated into a C program,
 including polymorphic behavior. The essential elements of using
 pointers with threads are illustrated. The meaning and use of the
 restrict keyword are covered.

Summary

This book is intended to provide a more in-depth discussion of the
 use of pointers than is found in other books. It presents examples ranging
 from the core use of pointers to obscure uses of pointers and identifies
 common pointer problems.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, if
 this book includes code examples, you may use the code in your programs
 and documentation. You do not need to contact us for permission unless
 you’re reproducing a significant portion of the code. For example, writing
 a program that uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from O’Reilly
 books does require permission. Answering a question by citing this book
 and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product’s
 documentation does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Understanding and Using C Pointers by Richard Reese
 (O’Reilly). Copyright 2013 Richard Reese, Ph.D. 978-1-449-34418-4.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata,
 examples, and any additional information. You can access this page at
 http://oreil.ly/Understand_Use_CPointers.
To comment or ask technical questions about this book, send email to
 bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. Introduction

A solid understanding of pointers and the ability to effectively
 use them separates a novice C programmer from a more experienced one.
 Pointers pervade the language and provide much of its flexibility. They
 provide important support for dynamic memory allocation, are closely tied to
 array notation, and, when used to point to functions, add another dimension
 to flow control in a program.
Pointers have long been a stumbling block in learning C. The basic
 concept of a pointer is simple: it is a variable that stores the address of
 a memory location. The concept, however, quickly becomes complicated when we
 start applying pointer operators and try to discern their often cryptic
 notations. But this does not have to be the case. If we start simple and
 establish a firm foundation, then the advanced uses of pointers are not hard
 to follow and apply.
The key to comprehending pointers is understanding how memory is
 managed in a C program. After all, pointers contain addresses in memory. If
 we don’t understand how memory is organized and managed, it is difficult to
 understand how pointers work. To address this concern, the organization of
 memory is illustrated whenever it is useful to explain a pointer concept.
 Once you have a firm grasp of memory and the ways it can be organized,
 understanding pointers becomes a lot easier.
This chapter presents an introduction to pointers, their operators,
 and how they interact with memory. The first section examines how they are
 declared, the basic pointer operators, and the concept of null. There are
 various types of “nulls” supported by C so a careful examination of them can
 be enlightening.
The second section looks more closely at the various memory models you
 will undoubtedly encounter when working with C. The model used with a given
 compiler and operating system environment affects how pointers are used. In
 addition, we closely examine various predefined types related to pointers
 and the memory models.
Pointer operators are covered in more depth in the next section,
 including pointer arithmetic and pointer comparisons. The last section
 examines constants and pointers. The numerous declaration combinations offer
 many interesting and often very useful possibilities.
Whether you are a novice C programmer or an experienced programmer,
 this book will provide you with a solid understanding of pointers and fill
 the gaps in your education. The experienced programmer will want to pick and
 choose the topics of interest. The beginning programmer should probably take
 a more deliberate approach.
Pointers and Memory

When a C program is compiled, it works with three types of
 memory:
	Static/Global
	Statically declared variables are allocated to this type of
 memory. Global variables also use this region of memory. They are
 allocated when the program starts and remain in existence until the
 program terminates. While all functions have access to global
 variables, the scope of static variables is restricted to their
 defining function.

	Automatic
	These variables are declared within a function and are
 created when a function is called. Their scope is restricted to the
 function, and their lifetime is limited to the time the function is
 executing.

	Dynamic
	Memory is allocated from the heap and can be released as
 necessary. A pointer references the allocated memory. The scope is
 limited to the pointer or pointers that reference the memory. It
 exists until it is released. This is the focus of Chapter 2.

Table 1-1 summarizes the scope of and lifetime of variables used in these memory
 regions.
Table 1-1. Scope and lifetime
	 	Scope	Lifetime
	Global	The entire file	The lifetime of the application
	Static	The function it is declared within	The lifetime of the application
	Automatic (local)	The function it is declared within	While the function is executing
	Dynamic	Determined by the pointers that reference this
 memory	Until the memory is freed

Understanding these types of memory will enable you to better
 understand how pointers work. Most pointers are used to manipulate data in
 memory. Understanding how memory is partitioned and organized will clarify
 how pointers manipulate memory.
A pointer variable contains the address in memory of another
 variable, object, or function. An object is considered to be memory
 allocated using one of the memory allocation functions, such as the
 malloc function. A pointer is normally
 declared to be of a specific type depending on what it points to, such as
 a pointer to a char. The object may be
 any C data type such as integer, character, string, or structure. However,
 nothing inherent in a pointer indicates what type of data the pointer is
 referencing. A pointer only contains an address.
Why You Should Become Proficient with Pointers

Pointers have several uses, including:
	Creating fast and efficient code

	Providing a convenient means for addressing many types of
 problems

	Supporting dynamic memory allocation

	Making expressions compact and succinct

	Providing the ability to pass data structures by pointer
 without incurring a large overhead

	Protecting data passed as a parameter to a function

Faster and more efficient code can be written because pointers are
 closer to the hardware. That is, the compiler can more easily translate
 the operation into machine code. There is not as much overhead
 associated with pointers as might be present with other operators.
Many data structures are more easily implemented using
 pointers. For example, a linked list could be supported using either
 arrays or pointers. However, pointers are easier to use and map directly
 to a next or previous link. An array implementation requires array
 indexes that are not as intuitive or as flexible as pointers.
Figure 1-1 illustrates
 how this can be visualized using arrays and pointers for a linked list
 of employees. The lefthand side of the figure uses an array. The head
 variable indicates that the linked list’s first element is at index 10
 of the array. Each array’s element contains a structure that represents
 an employee. The structure’s next
 field holds the index in the array of the next employee. The shaded
 elements represent unused array elements.
The righthand side shows the equivalent representation using
 pointers. The head variable holds a pointer to the first employee’s
 node. Each node holds employee data as well as a pointer to the next
 node in the linked list.
The pointer representation is not only clearer but also more
 flexible. The size of an array typically needs to be known when it is
 created. This will impose a restriction on the number of elements it can
 hold. The pointer representation does not suffer from this limitation as
 a new node can be dynamically allocated as needed.
[image: Array versus pointers representation of a linked list]

Figure 1-1. Array versus pointers representation of a linked list

Dynamic memory allocation is effected in C through the use of
 pointers. The malloc and free functions are used to allocate and
 release dynamic memory, respectively. Dynamic memory allocation enables
 variable-sized arrays and data structures, such as linked lists and
 queues. However, in the new C standard, C11, variable size arrays are
 supported.
Compact expressions can be very descriptive but can also be
 cryptic, as pointer notation is not always fully understood by many
 programmers. Compact expressions should address a specific need and not
 be cryptic just to be cryptic. For example, in the following sequence,
 the third character of the names'
 second element is displayed with two different printf functions. If this usage of pointers is
 confusing, don’t worry—we will explain how dereferencing works in more
 detail in the section Dereferencing a Pointer Using the Indirection Operator.
 While the two approaches are equivalent and will display the character
 n, the simpler approach is to use array
 notation.
 char *names[] = {"Miller","Jones","Anderson"};
 printf("%c\n",*(*(names+1)+2));
 printf("%c\n",names[1][2]);
Pointers represent a powerful tool to create and enhance
 applications. On the downside, many problems can occur when using
 pointers, such as:
	Accessing arrays and other data structures beyond their
 bounds

	Referencing automatic variables after they have gone out of
 existence

	Referencing heap allocated memory after it has been
 released

	Dereferencing a pointer before memory has been allocated to
 it

These types of problems will be examined in more detail in Chapter 7.
The syntax and semantics of pointer usage are fairly well
 defined in the C
 specification. However, there are situations where the
 specification does not explicitly define pointer behavior. In these
 cases the behavior is defined to be either:
	Implementation-defined
	Some specific, documented implementation is provided. An
 example of implementation-defined behavior is how the high-order
 bit is propagated in an integer shift right operation.

	Unspecified
	Some implementation is provided but is not documented. An
 example of an unspecified behavior is the amount of memory
 allocated by the malloc
 function with an argument of zero. A list of unspecified behavior
 can be found at CERT Secure
 Coding Appendix DD.

	Undefined
	There are no requirements imposed and anything can happen.
 An example of this is the value of a pointer deallocated by the
 free functions. A list of
 unspecified behavior can be found at CERT Secure Coding Appendix
 CC.

Sometimes there are locale-specific behaviors. These are usually
 documented by the compiler vendor. Providing locale-specific behavior
 allows the compiler-writer latitude in generating more efficient
 code.

Declaring Pointers

Pointer variables are declared using a data type followed by an
 asterisk and then the pointer variable’s name. In the following example,
 an integer and a pointer to an integer are declared:
 int num;
 int *pi;
The use of white spaces around the asterisk is irrelevant. The
 following declarations are all equivalent:
 int* pi;
 int * pi;
 int *pi;
 int*pi;
Note
The use of white space is a matter of user preference.

The asterisk declares the variable as a pointer. It is an
 overloaded symbol as it is also used for multiplication and
 dereferencing a pointer.
Figure 1-2
 illustrates how memory would typically be allocated for the above
 declaration. Three memory locations are depicted by the three
 rectangles. The number to the left of each rectangle is its address. The
 name next to the address is the variable assigned to this location. The
 address 100 is used here for illustrative purposes. The actual address
 of a pointer, or any variable for that matter, is not normally known,
 nor is its value of interest in most applications. The three dots
 represent uninitialized memory.
Pointers to uninitialized memory
 can be a problem. If such a pointer is dereferenced, the pointer’s
 content probably does not represent a valid address, and if it does, it
 may not contain valid data. An invalid address is one that the program
 is not authorized to access. This will result in the program terminating on most platforms,
 which is significant and can lead to a number of problems, as discussed
 in Chapter 7.
[image: Memory diagram]

Figure 1-2. Memory diagram

The variables num and pi are located at addresses 100 and 104,
 respectively. Both are assumed to occupy four bytes. Both of these sizes
 will differ, depending on the system configuration as addressed in the
 section Pointer Size and Types. Unless otherwise
 noted, we will use four-byte integers for all of our examples.
Note
In this book, we will use an address such as 100 to explain how
 pointers work. This will simplify the examples. When you execute the
 examples you will get different addresses, and these addresses can
 even change between repeated executions of the program.

There are several points to remember:
	The content of pi should
 eventually be assigned the address of an integer variable.

	These variables have not been initialized and thus contain
 garbage.

	There is nothing inherent to a pointer’s implementation that
 suggests what type of data it is referencing or whether its contents
 are valid.

	However, the pointer type has been specified and the compiler
 will frequently complain when the pointer is not used
 correctly.

Note
By garbage, we mean the memory allocation could contain any
 value. When memory is allocated it is not cleared. The previous
 contents could be anything. If the previous contents held a floating
 point number, interpreting it as an integer would likely not be
 useful. Even if it contained an integer, it would not likely be the
 right integer. Thus, its contents are said to hold garbage.

While a pointer may be used without being initialized, it may not
 always work properly until it has been initialized.

How to Read a Declaration

Now is a good time to suggest a way to read pointer
 declarations, which can make them easier to understand. The trick is to
 read them backward. While we haven’t discussed pointers to constants
 yet, let’s examine the following declaration:
 const int *pci;
Reading the declaration backward allows us to progressively
 understand the declaration (Figure 1-3).
[image: The backward declaration]

Figure 1-3. The backward declaration

Many programmers find that reading the declaration backward is
 less complex.
Note
When working with complex pointer expressions, draw a picture of
 them, as we will do in many of our examples.

Address of Operator

The address of operator, &, will
 return its operand’s address. We can initialize the pi pointer with the address of num using this operator as follows:
 num = 0;
 pi = #
The variable num is set to
 zero, and pi is set to point to the
 address of num as illustrated in
 Figure 1-4.
[image: Memory assignments]

Figure 1-4. Memory assignments

We could have initialized pi to
 point to the address of num when the
 variables were declared as illustrated below:
 int num;
 int *pi = #
Using these declarations, the following statement will result in a
 syntax error on most compilers:
 num = 0;
 pi = num;
The error would appear as follows:
error: invalid conversion from 'int' to 'int*'
The variable pi is of type
 pointer to an integer and num is of
 type integer. The error message is saying we cannot convert an integer
 to a pointer to the data type integer.
Note
Assignment of integers to a pointer will generally cause a
 warning or error.

Pointers and integers are not the same. They may both be stored
 using the same number of bytes on most machines, but they are not the
 same. However, it is possible to cast an integer to a pointer to an
 integer:
 pi = (int *)num;
This will not generate a syntax error. When executed, though, the program may terminate abnormally
 when the program attempts to dereference the value at address zero. An
 address of zero is not always valid for use in a program on most
 operating systems. We will discuss this in more detail in the section
 The Concept of Null.
Note
It is a good practice to initialize a pointer as soon as
 possible, as illustrated below:
 int num;
 int *pi;
 pi = #

Displaying Pointer Values

Rarely will the variables we use actually have an address such as
 100 and 104. However, the variable’s address can be determined by
 printing it out as follows:
 int num = 0;
 int *pi = #

 printf("Address of num: %d Value: %d\n",&num, num);
 printf("Address of pi: %d Value: %d\n",&pi, pi);
When executed, you may get output as follows. We used real
 addresses in this example. Your addresses will probably be
 different:
Address of num: 4520836 Value: 0
Address of pi: 4520824 Value: 4520836
The printf function has a
 couple of other field specifiers useful when displaying pointer values,
 as summarized in Table 1-2.
Table 1-2. Field specifiers
	Specifier	Meaning
	%x	Displays the value as a hexadecimal number.
	%o	Displays the value as an octal number.
	%p	Displays the value in an implementation-specific manner;
 typically as a hexadecimal number.

Their use is demonstrated below:
 printf("Address of pi: %d Value: %d\n",&pi, pi);
 printf("Address of pi: %x Value: %x\n",&pi, pi);
 printf("Address of pi: %o Value: %o\n",&pi, pi);
 printf("Address of pi: %p Value: %p\n",&pi, pi);
This will display the address and contents of pi, as shown below. In this case, pi holds the address of num:
Address of pi: 4520824 Value: 4520836
Address of pi: 44fb78 Value: 44fb84
Address of pi: 21175570 Value: 21175604
Address of pi: 0044FB78 Value: 0044FB84
The %p specifier differs from
 %x as it typically displays the
 hexadecimal number in uppercase. We will use the %p specifier for addresses unless otherwise
 indicated.
Displaying pointer values consistently on different platforms can
 be challenging. One approach is to cast the pointer as a pointer to void
 and then display it using the %p
 format specifier as follows:
 printf("Value of pi: %p\n", (void*)pi);
Pointers to void is explained in Pointer to void. To keep our examples simple, we will
 use the %p specifier and not cast the
 address to a pointer to void.
Virtual memory and pointers

To further complicate displaying addresses, the pointer
 addresses displayed on a virtual operating
 system are not likely to be the real physical memory
 addresses. A virtual operating system allows a program to be split
 across the machine’s physical address space. An application is split
 into pages/frames. These pages represent areas of main memory. The
 pages of the application are allocated to different, potentially
 noncontiguous areas of memory and may not all be in memory at the same
 time. If the operating system needs memory currently held by a page,
 the memory may be swapped out to secondary storage and then reloaded
 at a later time, frequently at a different memory location. These
 capabilities provide a virtual operating system with considerable
 flexibility in how it manages memory.
Each program assumes it has access to the machine’s entire
 physical memory space. In reality, it does not. The address used by a
 program is a virtual address. The operating system maps the virtual
 address to a real physical memory address when needed.
This means code and data in a page may be in different physical
 locations as the program executes. The application’s virtual addresses
 do not change; they are the addresses we see when we examine the
 contents of a pointer. The virtual addresses are transparently mapped
 to real addresses by the operating system.
The operating system handles all of this, and it is not
 something that the programmer has control over or needs to worry
 about. Understanding these issues explains the addresses returned by a
 program running in a virtual operating system.

Dereferencing a Pointer Using the Indirection Operator

The indirection operator, *, returns the value pointed to by
 a pointer variable. This is frequently referred to as dereferencing a
 pointer. In the following example, num and pi
 are declared and initialized:
 int num = 5;
 int *pi = #
The indirection operator is then used in the following statement
 to display 5, the value of num:
 printf("%p\n",*pi); // Displays 5
We can also use the result of the dereference operator as an
 lvalue. The term lvalue refers to the operand
 found on the left side of the assignment operator. All lvalues must be modifiable since they are
 being assigned a value.
The following will assign 200 to the integer pointed to by
 pi. Since it is pointing to the
 variable num, 200 will be assigned to
 num. Figure 1-5 illustrates how
 memory is affected:
 *pi = 200;
 printf("%d\n",num); // Displays 200
[image: Memory assigned using dereference operator]

Figure 1-5. Memory assigned using dereference operator

Pointers to Functions

A pointer can be declared to point to a function. The
 declaration notation is a bit cryptic. The following illustrates how to
 declare a pointer to a function. The function is passed void and returns
 void. The pointer’s name is foo:
 void (*foo)();
A pointer to a function is a rich topic area
 and will be covered in more detail in Chapter 3.

The Concept of Null

The concept of null is interesting and sometimes misunderstood.
 Confusion can occur because we often deal with several similar, yet
 distinct concepts, including:
	The null concept

	The null pointer constant

	The NULL macro

	The ASCII NUL

	A null string

	The null statement

When NULL is assigned to a
 pointer, it means the pointer does not point to anything. The null
 concept refers to the idea that a pointer can hold a special value that
 is not equal to another pointer. It does not point to any area of
 memory. Two null pointers will always be equal to each other. There can
 be a null pointer type for each pointer type, such as a pointer to a
 character or a pointer to an integer, although this is uncommon.
The null concept is an abstraction supported by the null pointer
 constant. This constant may or may not be a constant zero. A C
 programmer need not be concerned with their actual internal
 representation.
The NULL macro is a constant integer zero cast to a pointer
 to void. In many libraries, it is defined as follows:
#define NULL ((void *)0)
This is what we typically think of as a null pointer. Its
 definition frequently can be found within several different header
 files, including stddef.h,
 stdlib.h, and stdio.h.
If a nonzero bit pattern is used by the compiler to represent
 null, then it is the compiler’s responsibility to ensure all uses of
 NULL or 0 in a pointer context are
 treated as null pointers. The actual internal representation of null is
 implementation-defined. The use of NULL and 0 are language-level symbols that
 represent a null pointer.
The ASCII NUL is defined
 as a byte containing all zeros. However, this is not the same as a null
 pointer. A string in C is represented as a sequence of characters
 terminated by a zero value. The null string is an empty string and does
 not contain any characters. Finally, the null statement consists of a
 statement with a single semicolon.
As we will see, a null pointer is a very useful feature for many
 data structure implementations, such as a linked list where it is often
 used to mark the end of the list.
If the intent was to assign the null value to pi, we use the NULL type as follows:
 pi = NULL;
Note
A null pointer and an uninitialized pointer are different. An
 uninitialized pointer can contain any value, whereas a pointer
 containing NULL does not reference any location in memory.

Interestingly, we can assign a zero to a pointer, but we cannot assign
 any other integer value. Consider the following assignment
 operations:
 pi = 0;
 pi = NULL;
 pi = 100; // Syntax error
 pi = num; // Syntax error
A pointer can be used as the sole operand of a logical expression.
 For example, we can test to see whether the pointer is set to NULL using the following sequence:
 if(pi) {
 // Not NULL
 } else {
 // Is NULL
 }
Note
Either of the two following expressions are valid but are
 redundant. It may be clearer, but explicit comparison to NULL is not
 necessary.

If pi has been assigned a
 NULL value in this context, then it
 will be interpreted as the binary zero. Since this represents false in
 C, the else clause will be executed if pi contains NULL.
if(pi == NULL) ...
if(pi != NULL) ...
Note
A null pointer should never be dereferenced because it
 does not contain a valid address. When executed it will result in the program
 terminating.

To NULL or not to NULL

Which is better form: using NULL or using 0 when working with pointers?
 Either is perfectly acceptable; the choice is one of preference. Some
 developers prefer to use NULL
 because it is a reminder that we are working with pointers. Others
 feel this is unnecessary because the zero is simply hidden.
However, NULL should not be
 used in contexts other than pointers. It might work some of the time,
 but it is not intended to be used this way. It can definitely be a problem when used in place of the
 ASCII NUL character. This character
 is not defined in any standard C header file. It is equivalent to the
 character literal, '\0', which evaluates to the
 decimal value zero.
The meaning of zero changes depending on its context. It
 might mean the integer zero in some contexts, and it might mean a null
 pointer in a different context. Consider the following example:
 int num;
 int *pi = 0; // Zero refers to the null pointer,NULL
 pi = #
 *pi = 0; // Zero refers to the integer zero
We are accustomed to overloaded operators, such as the asterisk
 used to declare a pointer, to dereference a pointer, or to multiply.
 The zero is also overloaded. We may find this discomforting because we
 are not used to overloading operands.

Pointer to void

A pointer to void is a general-purpose pointer used to
 hold references to any data type. An example of a pointer to void is
 shown below:
 void *pv;
It has two interesting properties:
	A pointer to void will have the same representation and
 memory alignment as a pointer to char.

	A pointer to void will never be equal to another pointer.
 However, two void pointers assigned a NULL value will be equal.

Any pointer can be assigned to a pointer to void. It can then be
 cast back to its original pointer type. When this happens the value
 will be equal to the original pointer value. This is illustrated in
 the following sequence, where a pointer to int is assigned to a pointer to void and
 then back to a pointer to int:
 int num;
 int *pi = #
 printf("Value of pi: %p\n", pi);
 void* pv = pi;
 pi = (int*) pv;
 printf("Value of pi: %p\n", pi);
When this sequence is executed as shown below, the pointer
 address is the same:
Value of pi: 100
Value of pi: 100
Pointers to void are used for data pointers, not function
 pointers. In Polymorphism in C, we will
 reexamine the use of pointers to void to address polymorphic
 behavior.
Note
Be careful when using pointers to void. If you cast an
 arbitrary pointer to a pointer to void, there is nothing preventing
 you from casting it to a different pointer type.

The sizeof operator can
 be used with a pointer to void. However, we cannot use the operator
 with void as shown below:
 size_t size = sizeof(void*); // Legal
 size_t size = sizeof(void); // Illegal
The size_t is a data type used for sizes and
 is discussed in the section Predefined Pointer-Related Types.

Global and static pointers

If a pointer is declared as global or static, it is
 initialized to NULL when the
 program starts. An example of a global and static pointer
 follows:
int *globalpi;

void foo() {
 static int *staticpi;
 ...
}

int main() {
 ...
}
Figure 1-6 illustrates this memory layout. Stack
 frames are pushed onto the stack, and the heap is used for dynamic
 memory allocation. The region above the heap is used for static/global
 variables. This is a conceptual diagram only. Static and global
 variables are frequently placed in a data segment separate from the
 data segment used by the stack and heap. The stack and heap are
 discussed in Program Stack and Heap.
[image: Memory allocation for global and static pointers]

Figure 1-6. Memory allocation for global and static pointers

Pointer Size and Types

Pointer size is an issue when we become concerned about application
 compatibility and portability. On most modern platforms, the size of a
 pointer to data is normally the same regardless of the pointer type. A
 pointer to a char has the same size as
 a pointer to a structure. While the C standard does not dictate that size
 be the same for all data types, this is usually the case. However, the
 size of a pointer to a function may be different from the size of a
 pointer to data.
The size of a pointer depends on the machine in use and the
 compiler. For example, on modern versions of Windows the pointer is 32 or
 64 bits in length. For DOS and Windows 3.1 operating systems, pointers
 were 16 or 32 bits in length.
Memory Models

The introduction of 64-bit machines has made more apparent
 the differences in the size of memory allocated for data types. With
 different machines and compilers come different options for allocating
 space to C primitive data types. A common notation used to describe
 different data models is summarized below:
I In L Ln LL LLn P Pn
Each capital letter corresponds to an integer, long, or pointer.
 The lowercase letters represent the number of bits allocated for the
 data type. Table 1-3[1] summarizes these models, where the number is the size in
 bits:
Table 1-3. Machine memory models
	C Data Type	LP64	ILP64	LLP64	ILP32	LP32
	char	8	8	8	8	8
	short	16	16	16	16	16
	_int32	 	32	 	 	
	int	32	64	32	32	16
	long	64	64	32	32	32
	long long	 	 	64	 	
	pointer	64	64	64	32	32

The model depends on the operating system and compiler. More than
 one model may be supported on the same operating system; this is often
 controlled through compiler options.

Predefined Pointer-Related Types

Four predefined types are frequently used when working
 with pointers. They include:
	size_t
	Created to provide a safe type for sizes

	ptrdiff_t
	Created to handle pointer arithmetic

	intptr_t and uintprt_t
	Used for storing pointer addresses

In the following sections, we will illustrate the use of each type
 with the exception of ptrdiff_t,
 which will be discussed in the section Subtracting two pointers.
Understanding size_t

The type size_t
 represents the maximum size any object can be in C. It is an unsigned
 integer since negative numbers do not make sense in this context. Its
 purpose is to provide a portable means of declaring a size consistent
 with the addressable area of memory available on a system. The
 size_t type is used as the return
 type for the sizeof operator and as
 the argument to many functions, including malloc and strlen, among others.
Note
It is good practice to use size_t when declaring variables for sizes
 such as the number of characters and array indexes. It should be
 used for loop counters, indexing into arrays, and sometimes for
 pointer arithmetic.

The declaration of size_t is
 implementation-specific. It is found in one or more standard headers, such as
 stdio.h and stdlib.h, and it is typically defined as
 follows:
#ifndef __SIZE_T
#define __SIZE_T
typedef unsigned int size_t;
#endif
The define directives ensure it is only defined once. The actual
 size will depend on the implementation. Typically, on a 32-bit system,
 it will be 32 bits in length, while on a 64-bit system it will be 64
 bits in length. Normally, the maximum possible value for size_t is SIZE_MAX.
Warning
Usually size_t can be used
 to store a pointer, but it is not a good idea to assume size_t is the same size as a pointer. As
 we will see in Using the sizeof operator with pointers, intptr_t is a better choice.

Be careful when printing values defined as size_t. These are unsigned values, and if
 you choose the wrong format specifier, you’ll get unreliable results.
 The recommended format specifier
 is %zu. However, this is not always
 available. As an alternative, consider using %u or %lu.
Consider the following example, where we define a variable as a
 size_t and then display it using
 two different format specifiers:
 size_t sizet = -5;
 printf("%d\n",sizet);
 printf("%zu\n",sizet);
Since a variable of type size_t is intended for use with positive
 integers, using a negative value can present problems. When we assign
 it a negative number and use the %d
 and then the %zu format specifiers,
 we get the following output:
-5
4294967291
The %d field interprets
 size_t as a signed integer. It
 displays a –5 because it holds a –5. The %zu field formats size_t as an unsigned integer. When –5 is
 interpreted as a signed integer, its high-order bit is set to one,
 indicating that the integer is negative. When interpreted as an
 unsigned number, the high-order bit is interpreted as a large power of
 2. This is why we saw the large integer when we used the %zu field specifier.
A positive number will be displayed properly as shown
 below:
 sizet = 5;
 printf("%d\n",sizet); // Displays 5
 printf("%zu\n",sizet); // Displays 5
Since size_t is unsigned,
 always assign a positive number to a variable of that type.

Using the sizeof operator with pointers

The sizeof operator can
 be used to determine the size of a pointer. The following displays the
 size of a pointer to char:
 printf("Size of *char: %d\n",sizeof(char*));
The output follows:
Size of *char: 4
Note
Always use the sizeof
 operator when the size of a pointer is needed.

The size of a function pointer can vary. Usually, it is
 consistent for a given operating system and compiler combination. Many
 compilers support the creation of a 32-bit or 64-bit application. It
 is possible that the same program, compiled with different options,
 will use different pointer sizes.
On a Harvard architecture, the code and data are stored in
 different physical memory. For example, the Intel MCS-51 (8051)
 microcontroller is a Harvard machine. Though Intel no longer
 manufactures the chip, there are many binary compatible derivatives
 available and in use today. The Small Device C
 Complier (SDCC) supports this type of processor. Pointers on
 this machine can range from 1 to 4 bytes in length. Thus, the size of
 a pointer should be determined when needed, as its size is not
 consistent in this type of environment.

Using intptr_t and uintptr_t

The types intptr_t and
 uintptr_t are used for storing
 pointer addresses. They provide a portable and safe way of declaring
 pointers, and will be the same size as the underlying pointer used on
 the system. They are useful for converting pointers to their integer
 representation.
The type uintptr_t is the
 unsigned version of intptr_t. For
 most operations intptr_t is
 preferred. The type uintptr_t is
 not as flexible as intptr_t. The
 following illustrates how to use intptr_t:
 int num;
 intptr_t *pi = #
If we try to assign the address of an integer to a pointer of
 type uintptr_t as follows, we will
 get a syntax error:
 uintptr_t *pu = #
The error follows:
error: invalid conversion from 'int*' to
 'uintptr_t* {aka unsigned int*}' [-fpermissive]
However, performing the assignment using a cast will
 work:
 intptr_t *pi = #
 uintptr_t *pu = (uintptr_t*)#
We cannot use uintptr_t with
 other data types without casting:
 char c;
 uintptr_t *pc = (uintptr_t*)&c;
These types should be used when portability and safety are an
 issue. However, we will not use them in our examples to simplify their
 explanations.
Warning
Avoid casting a pointer to an integer. In the case of 64-bit
 pointers, information will be lost if the integer was only four
 bytes.

Note
Early Intel processors used a 16-bit segmented architecture
 where near and far pointers were relevant. In today’s virtual memory
 architecture, they are no longer a factor. The far and near pointers
 were extensions to the C standard to support segmented architecture
 on early Intel processors. Near pointers were only able to address
 about 64KB of memory at a time. Far pointers could address up to 1MB
 of memory but were slower than near pointers. Huge pointers were far pointers normalized so they used
 the highest possible segment for the address.

Pointer Operators

There are several operators available for use with pointers. So
 far we have examined the dereference and address-of operators. In this
 section, we will look closely into pointer arithmetic and comparisons.
 Table 1-4 summarizes the pointer operators.
Table 1-4. Pointer operators
	Operator	Name	Meaning
	*	 	Used to declare a pointer
	*	Dereference	Used to dereference a pointer
	->	Point-to	Used to access fields of a structure referenced by a
 pointer
	+	Addition	Used to increment a pointer
	-	Subtraction	Used to decrement a pointer
	== !=	Equality, inequality	Compares two pointers
	> >= < <=	Greater than, greater than or equal, less than, less than
 or equal	Compares two pointers
	(data type)	Cast	To change the type of pointer

Pointer Arithmetic

Several arithmetic operations are performed on pointers to data.
 These include:
	Adding an integer to a pointer

	Subtracting an integer from a pointer

	Subtracting two pointers from each other

	Comparing pointers

These operations are not always permitted on pointers to
 functions.
Adding an integer to a pointer

This operation is very common and useful. When we add an integer
 to a pointer, the amount added is the product of the integer times the
 number of bytes of the underlying data type.
The size of primitive data types can vary from system to system,
 as discussed in Memory Models. However, Table 1-5 shows the common sizes found in most systems.
 Unless otherwise noted, these values will be used for the examples in
 this book.
Table 1-5. Data type sizes
	Data Type	Size in Bytes
	byte	1
	char	1
	short	2
	int	4
	long	8
	float	4
	double	8

To illustrate the effects of adding an integer to a pointer, we
 will use an array of integers, as shown below. Each time one is added
 to pi, four is added to the address. The memory
 allocated for these variables is illustrated in Figure 1-7. Pointers are declared with data types so that
 these sorts of arithmetic operations are possible. Knowledge of the
 data type size allows the automatic adjustment of the pointer values
 in a portable fashion:
 int vector[] = {28, 41, 7};
 int *pi = vector; // pi: 100

 printf("%d\n",*pi); // Displays 28
 pi += 1; // pi: 104
 printf("%d\n",*pi); // Displays 41
 pi += 1; // pi: 108
 printf("%d\n",*pi); // Displays 7
Note
When an array name is used by itself, it returns the address
 of an array, which is also the address of the first element of the
 array:

[image: Memory allocation for vector]

Figure 1-7. Memory allocation for vector

In the following sequence, we add three to the pointer. The
 variable pi will contain the
 address 112, the address of pi:
 pi = vector;
 pi += 3;
The pointer is pointing to itself. This is not very useful but
 illustrates the need to be careful when performing pointer arithmetic.
 Accessing memory past the end of an array is a dangerous thing to do
 and should be avoided. There is no guarantee that the memory access
 will be a valid variable. It is very easy to compute an invalid or
 useless address.
The following declarations will be used to illustrate the
 addition operation performed with a short and then a char data type:
 short s;
 short *ps = &s;
 char c;
 char *pc = &c;
Let’s assume memory is allocated as shown in Figure 1-8. The addresses used here are all on a four-byte
 word boundary. Real addresses may be aligned on different boundaries
 and in a different order.
[image: Pointers to short and char]

Figure 1-8. Pointers to short and char

The following sequence adds one to each pointer and then
 displays their contents:
 printf("Content of ps before: %d\n",ps);
 ps = ps + 1;
 printf("Content of ps after: %d\n",ps);

 printf("Content of pc before: %d\n",pc);
 pc = pc + 1;
 printf("Content of pc after: %d\n",pc);
When executed, you should get output similar to the
 following:
Content of ps before: 120
Content of ps after: 122
Content of pc before: 128
Address of pc after: 129
The ps pointer is incremented
 by two because the size of a short
 is two bytes. The pc pointer is
 incremented by one because its size is one byte. Again, these
 addresses may not contain useful information.

Pointers to void and addition

Most compilers allow arithmetic to be performed on a pointer
 to void as an extension. Here we will assume the size of a pointer to
 void is four. However, trying to add one to a pointer to void may
 result in a syntax error. In the following code snippet, we declare
 and attempt to add one to the pointer:
 int num = 5;
 void *pv = #
 printf("%p\n",pv);
 pv = pv+1; //Syntax warning
The resulting warning follows:
warning: pointer of type 'void *' used in arithmetic [-Wpointerarith]
Since this is not standard C, the compiler issued a warning.
 However, the resulting address contained in pv will be incremented by four bytes.

Subtracting an integer from a pointer

Integer values can be subtracted from a pointer in the same way
 they are added. The size of the data type times the integer increment
 value is subtracted from the address. To illustrate the effects of
 subtracting an integer from a pointer, we will use an array of
 integers as shown below. The memory created for these variables is
 illustrated in Figure 1-7.
 int vector[] = {28, 41, 7};
 int *pi = vector + 2; // pi: 108

 printf("%d\n",*pi); // Displays 7
 pi--; // pi: 104
 printf("%d\n",*pi); // Displays 41
 pi--; // pi: 100
 printf("%d\n",*pi); // Displays 28
Each time one is subtracted from pi, four is
 subtracted from the address.

Subtracting two pointers

When one pointer is subtracted from another, we get the
 difference between their addresses. This difference is not normally
 very useful except for determining the order of elements in an
 array.
The difference between the pointers is the number of “units” by
 which they differ. The difference’s sign depends on the order of the
 operands. This is consistent with pointer addition where the number
 added is the pointer’s data type size. We use “unit” as the operand.
 In the following example, we declare an array and pointers to the
 array’s elements. We then take their difference:
 int vector[] = {28, 41, 7};
 int *p0 = vector;
 int *p1 = vector+1;
 int *p2 = vector+2;

 printf("p2-p0: %d\n",p2-p0); // p2-p0: 2
 printf("p2-p1: %d\n",p2-p1); // p2-p1: 1
 printf("p0-p1: %d\n",p0-p1); // p0-p1: -1
In the first printf
 statement, we find the difference between the positions of the array’s
 last element and its first element is 2. That is, their indexes differ
 by 2. In the last printf statement,
 the difference is a –1, indicating that p0 immediately precedes the element pointed
 to by p1. Figure 1-9 illustrates how memory is
 allocated for this example.
[image: Subtracting two pointers]

Figure 1-9. Subtracting two pointers

The type ptrdiff_t is a
 portable way to express the difference between two pointers. In the
 previous example, the result of subtracting two pointers is returned
 as a ptrdiff_t type. Since pointer
 sizes can differ, this type simplifies the task of working with their
 differences.
Don’t confuse this technique with using the dereference operator
 to subtract two numbers. In the following example, we use pointers to
 determine the difference between the value stored in the array’s first
 and second elements:
 printf("*p0-*p1: %d\n",*p0-*p1); // *p0-*p1: -13

Comparing Pointers

Pointers can be compared using the standard comparison operators.
 Normally, comparing pointers is not very useful. However, when comparing
 pointers to elements of an array, the comparison’s results can be used
 to determine the relative ordering of the array’s elements.
We will use the vector example developed in the section Subtracting two pointers to illustrate the comparison
 of pointers. Several comparison operators are applied to the pointers,
 and their results are displayed as 1 for true and 0 for false:
 int vector[] = {28, 41, 7};
 int *p0 = vector;
 int *p1 = vector+1;
 int *p2 = vector+2;

 printf("p2>p0: %d\n",p2>p0); // p2>p0: 1
 printf("p2<p0: %d\n",p2<p0); // p2<p0: 0
 printf("p0>p1: %d\n",p0>p1); // p0>p1: 0

Common Uses of Pointers

Pointers can be used in a variety of ways. In this section, we will
 examine different ways of using pointers, including:
	Multiple levels of indirection

	Constant pointers

Multiple Levels of Indirection

Pointers can use different levels of indirection. It is not
 uncommon to see a variable declared as a pointer to a pointer, sometimes
 called a double pointer. A good example of this
 is when program arguments are passed to the main function using the traditionally named
 argc and argv parameters. This is discussed in more
 detail in Chapter 5.
The example below uses three arrays. The first array is an array
 of strings used to hold a list of book titles:
 char *titles[] = {"A Tale of Two Cities",
 "Wuthering Heights","Don Quixote",
 "Odyssey","Moby-Dick","Hamlet",
 "Gulliver's Travels"};
Two additional arrays are provided whose purpose is to maintain a
 list of the “best books” and English books. Instead of holding copies of
 the titles, they will hold the address of a title in the titles array. Both arrays will need to be
 declared as a pointer to a pointer to a char. The
 array’s elements will hold the addresses of the titles array’s elements. This will avoid
 having to duplicate memory for each title and results in a single
 location for titles. If a title needs to be changed, then the change
 will only have to be performed in one location.
The two arrays are declared below. Each array element contains a
 pointer that points to a second pointer to char:
 char **bestBooks[3];
 char **englishBooks[4];
The two arrays are initialized and one of their elements is
 displayed, as shown below. In the assignment statements, the value of
 the righthand side is calculated by applying the subscripts first,
 followed by the address-of operator. For example, the second statement
 assigns the address of the fourth element of titles to the second element of bestBooks:
 bestBooks[0] = &titles[0];
 bestBooks[1] = &titles[3];
 bestBooks[2] = &titles[5];

 englishBooks[0] = &titles[0];
 englishBooks[1] = &titles[1];
 englishBooks[2] = &titles[5];
 englishBooks[3] = &titles[6];

 printf("%s\n",*englishBooks[1]); // Wuthering Heights
Memory is allocated for this example as shown in Figure 1-10.
[image: Pointers to pointers]

Figure 1-10. Pointers to pointers

Using multiple levels of indirection provides additional
 flexibility in how code can be written and used. Certain types of
 operations would otherwise be more difficult. In this example, if the
 address of a title changes, it will only require modification to the
 title array. We
 would not have to modify the other arrays.
There is not an inherent limit on the number of levels of
 indirection possible. Of course, using too many levels of indirection
 can be confusing and hard to maintain.

Constants and Pointers

Using the const keyword with
 pointers is a rich and powerful aspect of C. It provides different types
 of protections for different problem sets. Of particular power and
 usefulness is a pointer to a constant. In Chapters 3
 and 5, we will see how this can protect
 users of a function from modification of a parameter by the
 function.
Pointers to a constant

A pointer can be defined to point to a constant. This
 means the pointer cannot be used to modify the value it is
 referencing. In the following example, an integer and an integer
 constant are declared. Next, a pointer to an integer and a pointer to
 an integer constant are declared and then initialized to the
 respective integers:
 int num = 5;
 const int limit = 500;
 int *pi; // Pointer to an integer
 const int *pci; // Pointer to a constant integer

 pi = #
 pci = &limit;
This is illustrated in Figure 1-11.
[image: Pointer to a constant integer]

Figure 1-11. Pointer to a constant integer

The following sequence will display the address and value of
 these variables:
 printf(" num - Address: %p value: %d\n",&num, num);
 printf("limit - Address: %p value: %d\n",&limit, limit);
 printf(" pi - Address: %p value: %p\n",&pi, pi);
 printf(" pci - Address: %p value: %p\n",&pci, pci);
When executed, this sequence will produce values similar to the
 following:
 num - Address: 100 value: 5
limit - Address: 104 value: 500
 pi - Address: 108 value: 100
 pci - Address: 112 value: 104
Dereferencing a constant pointer is fine if we are simply
 reading the integer’s value. Reading is a perfectly legitimate and
 necessary capability, as shown below:
 printf("%d\n", *pci);
We cannot dereference a constant pointer to change what the
 pointer references, but we can change the pointer. The pointer value
 is not constant. The pointer can be changed to reference another
 constant integer or a simple integer. Doing so will not be a problem.
 The declaration simply limits our ability to modify the referenced
 variable through the pointer.
This means the following assignment is legal:
 pci = #
We can dereference pci to
 read it; however, we cannot dereference it to modify it.
Consider the following assignment:
 *pci = 200;
This will result in the following syntax error:
'pci' : you cannot assign to a variable that is const
The pointer thinks it is pointing to a constant integer;
 therefore, it does allow the modification of the integer using the
 pointer. We can still modify num
 using its name. We just can’t use pci to modify it.
Conceptually, a constant pointer can also be visualized as shown
 in Figure 1-12. The clear boxes represent variables
 that can be changed. The shaded boxes represent variables that cannot
 be changed. The shaded box pointed to by pci cannot be changed using pci. The dashed line indicates that the
 pointer can reference that data type. In the previous example,
 pci pointed to limit.
[image: Pointer to a constant]

Figure 1-12. Pointer to a constant

The declaration of pci as a
 pointer to a constant integer means:
	pci can be assigned to
 point to different constant integers

	pci can be assigned to
 point to different nonconstant integers

	pci can be dereferenced
 for reading purposes

	pci cannot be
 dereferenced to change what it points to

Note
The order of the type and the const keyword is not important. The
 following are equivalent:
 const int *pci;
 int const *pci;

Constant pointers to nonconstants

We can also declare a constant pointer to a nonconstant.
 When we do this, it means that while the pointer cannot be changed,
 the data pointed to can be modified. An example of such a pointer
 follows:
 int num;
 int *const cpi = #
With this declaration:
	cpi must be initialized
 to a nonconstant variable

	cpi cannot be
 modified

	The data pointed to by cpi can be modified

Conceptually, this type of pointer can be visualized as shown in
 Figure 1-13.
[image: Constant pointers to nonconstants]

Figure 1-13. Constant pointers to nonconstants

It is possible to dereference cpi and assign a new value to whatever
 cpi is referencing. The following
 are two valid assignments:
 *cpi = limit;
 *cpi = 25;
However, if we attempt to initialize cpi to the constant limit as shown below, we will get a
 warning:
 const int limit = 500;
 int *const cpi = &limit;
The warning will appear as follows:
warning: initialization discards qualifiers from pointer target type
If cpi referenced the
 constant limit, the constant could
 be modified. This is not desirable. We generally prefer constants to
 remain constant.
Once an address has been assigned to cpi, we cannot assign a new value to
 cpi as shown below:
 int num;
 int age;
 int *const cpi = #
 cpi = &age;
The error message generated is shown below:
'cpi' : you cannot assign to a variable that is const

Constant pointers to constants

A constant pointer to a constant is an infrequently used
 pointer type. The pointer cannot be changed, and the data it points to
 cannot be changed through the pointer. An example of a constant
 pointer to a constant integer follows:
 const int * const cpci = &limit;
A constant pointer to a constant can be visualized as shown in
 Figure 1-14.
[image: Constant pointers to constants]

Figure 1-14. Constant pointers to constants

As with pointers to constants, it is not necessary to assign the
 address of a constant to cpci.
 Instead, we could have used num as
 shown below:
 int num;
 const int * const cpci = #
When the pointer is declared, we must initialize it. If we do
 not initialize it as shown below, we will get a syntax error:
 const int * const cpci;
The syntax error will be similar to the following:
'cpci' : const object must be initialized if not extern
Given a constant pointer to a constant we cannot:
	Modify the pointer

	Modify the data pointed to by the pointer

Trying to assign a new address to cpci will result in a syntax error:
 cpci = #
The syntax error follows:
'cpci' : you cannot assign to a variable that is const
If we try to dereference the pointer and assign a value as shown
 below, we will also get a syntax error:
 *cpci = 25;
The error generated will be similar to the following:
'cpci' : you cannot assign to a variable that is const
expression must be a modifiable lvalue
Constant pointers to constants are rare.

Pointer to (constant pointer to constant)

Pointers to constants can also have multiple levels of
 indirection. In the following example, we declare a pointer to the
 cpci pointer explained in the
 previous section. Reading complex declarations from right to left
 helps clarify these types of declarations:
 const int * const cpci = &limit;
 const int * const * pcpci;
A pointer to a constant pointer to a constant can be visualized
 as shown in Figure 1-15.
[image: Pointer to (constant pointer to constant)]

Figure 1-15. Pointer to (constant pointer to constant)

The following illustrates their use. The output of this sequence
 should display 500 twice:
 printf("%d\n",*cpci);
 pcpci = &cpci;
 printf("%d\n",**pcpci);
The following table summarizes the first four types of pointers
 discussed in the previous sections:
	Pointer Type	Pointer Modifiable	Data Pointed to Modifiable
	Pointer to a nonconstant	✓	✓
	Pointer to a constant	✓	X
	Constant pointer to a nonconstant	X	✓
	Constant pointer to a constant	X	X

Summary

In this chapter, we covered the essential aspects of pointers,
 including how to declare and use pointers in common situations. The
 interesting concept of null and its variations was covered, along with a
 number of pointer operators.
We found that the size of a pointer can vary, depending on the
 memory model supported by the target system and compiler. We also explored
 the use of the const keyword with
 pointers.
With this foundation, we are prepared to explore the other areas
 where pointers have proved to be quite useful. This includes their use as
 parameters to functions, in support of data structures, and in dynamically
 allocating memory. In addition, we will see the effect of their use in
 making applications more secure.

[1] Adapted from http://en.wikipedia.org/wiki/64-bit.

Chapter 2. Dynamic Memory Management in C

Much of the power of pointers stems from their ability to track
 dynamically allocated memory. The management of this memory through pointers
 forms the basis for many operations, including those used to manipulate
 complex data structures. To be able to fully exploit these capabilities, we
 need to understand how dynamic memory management occurs in C.
A C program executes within a runtime
 system. This is typically the environment provided by an
 operating system. The runtime system supports the stack and heap along with
 other program behavior.
Memory management is central to all programs. Sometimes memory is
 managed by the runtime system implicitly, such as when memory is allocated
 for automatic variables. In this case, variables are allocated to the
 enclosing function’s stack frame. In the case of static and global variables, memory is placed in
 the application’s data segment, where it is zeroed out. This is a separate
 area from executable code and other data managed by the runtime
 system.
The ability to allocate and then deallocate memory allows an
 application to manage its memory more efficiently and with greater
 flexibility. Instead of having to allocate memory to accommodate the largest
 possible size for a data structure, only the actual amount required needs to
 be allocated.
For example, arrays are fixed size in versions of C prior to C99. If
 we need to hold a variable number of elements, such as employee records, we
 would be forced to declare an array large enough to hold the maximum number
 of employees we believe would be needed. If we underestimate the size, we
 are forced to either recompile the application with a larger size or to take
 other approaches. If we overestimate the size, then we will waste space. The
 ability to dynamically allocate memory also helps when dealing with data
 structures using a variable number of elements, such as a linked list or a
 queue.
Note
C99 introduced Variable Length Arrays (VLAs). The array’s size is
 determined at runtime and not at compile time. However, once created,
 arrays still do not change size.

Languages such as C also support dynamic memory management where
 objects are allocated memory from the heap. This is done manually using
 functions to allocate and deallocate memory. The process is referred to as
 dynamic memory management.
We start this chapter with a quick overview of how memory is allocated
 and freed. Next, we present basic allocation functions such as malloc and realloc. The free function is discussed, including the use of
 NULL along with such problems as double free.
Dangling pointers are a common problem. We will present examples to
 illustrate when dangling pointers occur and techniques to handle the
 problem. The last section presents alternate techniques for managing memory.
 Improper use of pointers can result in unpredictable behavior. By this we
 mean the program can produce invalid results, corrupt data, or possibly
 terminate the program.
Dynamic Memory Allocation

The basic steps used for dynamic memory allocation in C
 are:
	Use a malloc type function to
 allocate memory

	Use this memory to support the application

	Deallocate the memory using the free function

While there are some minor variations to this approach, this is
 the most common technique. In the following example, we allocate memory
 for an integer using the malloc
 function. The pointer assigns five to the allocated memory, and then the
 memory is released using the free
 function:
 int *pi = (int*) malloc(sizeof(int));
 *pi = 5;
 printf("*pi: %d\n", *pi);
 free(pi);
When this sequence is executed, it will display the number 5. Figure 2-1 illustrates how memory is
 allocated right before the free
 function is executed. For the purposes of this chapter, we will assume
 that the example code is found in the main function unless otherwise noted.
[image: Allocating memory for an integer]

Figure 2-1. Allocating memory for an integer

The malloc function single
 argument specifies the number of bytes to allocate. If successful, it
 returns a pointer to memory allocated from the heap. If it fails, it
 returns a null pointer. Testing the validity of an allocated pointer is
 discussed in Using the malloc Function.
 The sizeof operator makes
 the application more portable and determines the correct number of bytes
 to allocate for the host system.
In this example, we are trying to allocate enough memory for an
 integer. If we assume its size is 4, we can use:
 int *pi = (int*) malloc(4));
However, the size of an integer can vary, depending on the memory
 model used. A portable approach is to use the sizeof operator. This will return the correct
 size regardless of where the program is executing.
Note
A common error involving the dereference operator is
 demonstrated below:
 int *pi;
 pi = (int) malloc(sizeof(int));
The problem is with the lefthand side of the assignment operation.
 We are dereferencing the pointer. This will assign the address returned
 by malloc to the address stored in
 pi. If this is the first time an
 assignment is made to the pointer, then the address contained in the
 pointer is probably invalid. The correct approach is shown below:
pi = (int*) malloc(sizeof(int));
The dereference operator should not be used in this
 situation.

The free function, also
 discussed in more detail later, works in conjunction with malloc to deallocate the
 memory when it is no longer needed.
Note
Each time the malloc function
 (or similar function) is called, a corresponding call to the free function must be made when the
 application is done with the memory to avoid memory leaks.

Once memory has been freed, it should not be accessed again.
 Normally, you would not intentionally access it after it had been
 deallocated. However, this can occur accidentally, as illustrated in the
 section Dangling Pointers. The system behaves in an
 implementation-dependent manner when this happens. A common practice is to
 always assign NULL to a freed pointer,
 as discussed in Assigning NULL to a Freed Pointer.
When memory is allocated, additional information is stored as part
 of a data structure maintained by the heap manager. This information
 includes, among other things, the block’s size, and is typically placed
 immediately adjacent to the allocated block. If the application writes outside of this block of memory,
 then the data structure can be corrupted. This can lead to strange program behavior or corruption of the
 heap, as we will see in Chapter 7.
Consider the following code sequence. Memory is allocated for a
 string, allowing it to hold up to five characters plus the byte for the
 NUL termination character. The
 for loop writes zeros to each location but does not
 stop after writing six bytes. The for statement’s
 terminal condition requires that it write eight bytes. The zeros being
 written are binary zeros and not the ASCII value for the character
 zero:
 char *pc = (char*) malloc(6);
 for(int i=0; i<8; i++) {
 *pc[i] = 0;
 }
In Figure 2-2, extra memory
 has been allocated at the end of the six-byte string. This represents the
 extra memory used by the heap manager to keep track of the memory
 allocation. If we write past the end of the string, this extra memory will
 be corrupted. The extra memory is shown following the string in this
 example. However, its actual placement and its original content depend on
 the compiler.
[image: Extra memory used by heap manager]

Figure 2-2. Extra memory used by heap manager

Memory Leaks

A memory leak occurs when allocated memory is never used
 again but is not freed. This can happen when:
	The memory’s address is lost

	The free function is never
 invoked though it should be (sometimes called a hidden leak)

A problem with memory leaks is that the memory cannot be reclaimed
 and used later. The amount of memory available to the heap manager is
 decreased. If memory is repeatedly allocated and then lost,
 then the program may terminate when more memory is needed but
 malloc cannot allocate it because it
 ran out of memory. In extreme cases, the operating system may
 crash.
This is illustrated in the following simple example:
 char *chunk;
 while (1) {
 chunk = (char*) malloc(1000000);
 printf("Allocating\n");
 }
The variable chunk is assigned
 memory from the heap. However, this memory is not freed before another
 block of memory is assigned to it. Eventually, the application will run
 out of memory and terminate abnormally. At minimum, memory is not being
 used efficiently.
Losing the address

An example of losing the address of memory is illustrated
 in the following code sequence where pi is reassigned a new address. The address
 of the first allocation of memory is lost when pi is allocated memory a second time.
 int *pi = (int*) malloc(sizeof(int));
 *pi = 5;
 ...
 pi = (int*) malloc(sizeof(int));
This is illustrated in Figure 2-3 where
 the before and after images refer to the program’s state before and
 after the second malloc’s
 execution. The memory at address 500 has not been released, and the
 program no longer holds this address anywhere.
[image: Losing an address]

Figure 2-3. Losing an address

Another example allocates memory for a string, initializes it,
 and then displays the string character by character:
 char *name = (char*)malloc(strlen("Susan")+1);
 strcpy(name,"Susan");
 while(*name != 0) {
 printf("%c",*name);
 name++;
 }
However, it increments name
 by one with each loop iteration. At the end, name is left pointing to the string’s
 NUL termination character, as
 illustrated in Figure 2-4. The
 allocated memory’s starting
 address has been lost.
[image: Losing address of dynamically allocated memory]

Figure 2-4. Losing address of dynamically allocated memory

Hidden memory leaks

Memory leaks can also occur when the program should release
 memory but does not. A hidden memory leak occurs when an object is
 kept in the heap even though the object is no longer needed. This is
 frequently the result of programmer oversight. The primary problem
 with this type of leak is that the object is using memory that is no
 longer needed and should be returned to the heap. In the worst case,
 the heap manager may not be able to allocate memory when requested,
 possibly forcing the program to terminate. At best, we are
 holding unneeded memory.
Memory leaks can also occur when freeing structures created
 using the struct keyword. If the
 structure contains pointers to dynamically allocated memory, then
 these pointers may need to be freed before the structure is freed. An
 example of this is found in Chapter 6.

Dynamic Memory Allocation Functions

Several memory allocation functions are available to manage dynamic
 memory. While what is available may be system dependent, the following
 functions are found on most systems in the stdlib.h header file:
	malloc

	realloc

	calloc

	free

The functions are summarized in Table 2-1.
Table 2-1. Dynamic memory allocation functions
	Function	Description
	malloc	Allocates memory from the heap
	realloc	Reallocates memory to a larger or smaller amount based on a
 previously allocated block of memory
	calloc	Allocates and zeros out memory from the heap
	free	Returns a block of memory to the heap

Dynamic memory is allocated from the heap. With successive memory
 allocation calls, there is no guarantee regarding the order of the memory
 or the continuity of memory allocated. However, the memory allocated will
 be aligned according to the pointer’s data type. For example, a four-byte
 integer would be allocated on an address boundary evenly divisible by
 four. The address returned by the heap manager will contain the lowest
 byte’s address.
In Figure 2-3, the malloc function allocates four bytes at address
 500. The second use of the malloc
 function allocates memory at address 600. They both are on four-byte
 address boundaries, and they did not allocate memory from consecutive
 memory locations.
Using the malloc Function

The function malloc allocates a
 block of memory from the heap. The number of bytes allocated is
 specified by its single argument. Its return type is a pointer to void.
 If memory is not available, NULL is
 returned. The function does not clear or otherwise modify the memory,
 thus the contents of memory should be treated as if it contained
 garbage. The function’s prototype follows:
 void* malloc(size_t);
The function possesses a single argument of type size_t. This type is discussed in Chapter 1. You need to be careful when passing
 variables to this function, as problems can arise if the argument is a
 negative number. On some systems, a NULL value is returned if the
 argument is negative.
When malloc is used with an
 argument of zero, its behavior is implementation-specific. It may return
 a pointer to NULL or it may return a
 pointer to a region with zero bytes allocated. If the malloc function is used with a NULL argument, then it will normally generate
 a warning and execute returning zero bytes.
The following shows a typical use of the malloc function:
 int *pi = (int*) malloc(sizeof(int));
The following steps are performed when the malloc function is executed:
	Memory is allocated from the heap

	The memory is not modified or otherwise
 cleared

	The first byte’s address is returned

Note
Since the malloc function may
 return a NULL value if it is unable to allocate memory, it is a good
 practice to check for a NULL value before using the pointer as
 follows:
 int *pi = (int*) malloc(sizeof(int));
 if(pi != NULL) {
 // Pointer should be good
 } else {
 // Bad pointer
 }

To cast or not to cast

Before the pointer to void was introduced to C, explicit casts
 were required with malloc to stop the generation of
 warnings when assignments were made between incompatible pointer
 types. Since a pointer to void can be assigned to any other pointer
 type, explicit casting is no longer required. Some developers consider
 explicit casts to be a good practice because:
	They document the intention of the malloc function

	They make the code compatible with C++ (or earlier C
 compiler), which require explicit casts

Using casts will be a problem if you fail to include the header
 file for malloc. The compiler may
 generate warnings. By default, C assumes functions return an integer.
 If you fail to include a prototype for malloc, it will complain when you try to
 assign an integer to a pointer.

Failing to allocate memory

If you declare a pointer but fail to allocate memory to the
 address it points to before using it, that memory will usually contain
 garbage, resulting typically in an invalid memory reference. Consider
 the following code sequence:
 int *pi;
 ...
 printf("%d\n",*pi);
The allocation of memory is shown in Figure 2-5.
 This issue is covered in more detail in Chapter 7.
[image: Failure to allocate memory]

Figure 2-5. Failure to allocate memory

When executed, this can result in a runtime exception. This type
 of problem is common with strings, as shown below:
 char *name;
 printf("Enter a name: ");
 scanf("%s",name);
While it may seem like this would execute correctly, we are
 using memory referenced by name.
 However, this memory has not been allocated. This problem can be
 illustrated graphically by changing the variable, pi, in Figure 2-5 to name.

Not using the right size for the malloc function

The malloc function allocates
 the number of bytes specified by its argument. You need to be careful
 when using the function to allocate the correct number of bytes. For
 example, if we want to allocate space for 10 doubles, then we need to
 allocate 80 bytes. This is achieved as shown below:
 double *pd = (double*)malloc(NUMBER_OF_DOUBLES * sizeof(double));
Note
Use the sizeof operator
 when specifying the number of bytes to allocate for data types
 whenever possible.

In the following example, an attempt is made to allocate memory
 for 10 doubles:
 const int NUMBER_OF_DOUBLES = 10;
 double *pd = (double*)malloc(NUMBER_OF_DOUBLES);
However, the code only allocated 10 bytes.

Determining the amount of memory allocated

There is no standard way to determine the total amount of
 memory allocated by the heap. However, some compilers provide
 extensions for this purpose. In addition, there is no standard way of
 determining the size of a memory block allocated by the heap
 manager.
For example, if we allocate 64 bytes for a string, the heap
 manager will allocate additional memory to manage this block. The
 total size allocated, and the amount used by the heap manager, is the
 sum of these two quantities. This was illustrated in Figure 2-2.
The maximum size that can be allocated with malloc is system dependent. It would seem
 like this size should be limited by size_t. However, limitations can be imposed
 by the amount of physical memory present and other operating system
 constraints.
When malloc executes, it is
 supposed to allocate the amount of memory requested and then return
 the memory’s address. What happens if the underlying operating system
 uses “lazy initialization” where it does not actually allocate the
 memory until it is accessed? A problem can arise at this point if
 there is not enough memory available to allocate. The answer depends
 on the runtime and operating systems. A typical developer normally
 would not need to deal with this question because such initialization
 schemes are quite rare.

Using malloc with static and global pointers

You cannot use a function call when initializing a static or
 global variable. In the following code sequence, we declare a static
 variable and then attempt to initialize it using malloc:
 static int *pi = malloc(sizeof(int));
This will generate a compile-time error message. The same thing
 happens with global variables but can be avoided for static variables
 by using a separate statement to allocate memory to the variable as
 follows. We cannot use a separate assignment statement with global
 variables because global variables are declared outside of a function
 and executable code, such as the assignment statement, must be inside
 of a function:
 static int *pi;
 pi = malloc(sizeof(int));
Note
From the compiler standpoint, there is a difference
 between using the initialization operator, =, and using the
 assignment operator, =.

Using the calloc Function

The calloc function will
 allocate and clear memory at the same time. Its prototype
 follows:
 void *calloc(size_t numElements, size_t elementSize);
Note
To clear memory means its contents are set to all binary
 zeros.

The function will allocate memory determined by the product of the
 numElements and elementSize parameters. A pointer is returned
 to the first byte of memory. If the function is unable to allocate
 memory, NULL is returned. Originally,
 this function was used to aid in the allocation of memory for
 arrays.
If either numElements or
 elementSize is zero, then a null
 pointer may be returned. If calloc is
 unable to allocate memory, a null pointer is returned and the global
 variable, errno, is set to ENOMEM (out of memory). This is a POSIX error code and may not be available on
 all systems.
Consider the following example where pi is allocated a total of 20 bytes, all
 containing zeros:
 int *pi = calloc(5,sizeof(int));
Instead of using calloc, the malloc function along with the memset function can be used to achieve the
 same results, as shown below:
 int *pi = malloc(5 * sizeof(int));
 memset(pi, 0, 5* sizeof(int));
Note
The memset function will fill
 a block with a value. The first argument is a pointer to the buffer to
 fill. The second is the value used to fill the buffer, and the last
 argument is the number of bytes to be set.

Use calloc when memory needs to
 be zeroed out. However, the execution of calloc may take longer than using malloc.
Note
The function cfree is no
 longer needed. In the early days of C it was used to free memory
 allocated by calloc.

Using the realloc Function

Periodically, it may be necessary to increase or decrease the amount of
 memory allocated to a pointer. This is particularly useful when a
 variable size array is needed, as will be demonstrated in Chapter 4. The realloc function will reallocate memory. Its
 prototype follows:
void *realloc(void *ptr, size_t size);
The function realloc returns a
 pointer to a block of memory. The function takes two arguments. The
 first is a pointer to the original block, and the second is the
 requested size. The reallocated block’s size will be different from the
 size of the block referenced by the first argument. The return value is
 a pointer to the reallocated memory.
The requested size may be smaller or larger than the currently
 allocated amount. If the size is less than what is currently allocated,
 then the excess memory is returned to the heap. There is no guarantee
 that the excess memory will be cleared. If the size is greater than what
 is currently allocated, then if possible, the memory will be allocated
 from the region immediately following the current allocation. Otherwise,
 memory is allocated from a different region of the heap and the old
 memory is copied to the new region.
If the size is zero and the pointer is not null, then the pointer
 will be freed. If space cannot be allocated, then the original block of
 memory is retained and is not changed. However, the pointer returned is
 a null pointer and the errno is set
 to ENOMEM.
The function’s behavior is summarized in Table 2-2.
Table 2-2. Behavior of realloc function
	First Parameter	Second Parameter	Behavior
	null	NA	Same as malloc
	Not null	0	Original block is freed
	Not null	Less than the original block’s size	A smaller block is allocated using the current
 block
	Not null	Larger than the original block’s size	A larger block is allocated either from the current
 location or another region of the heap

In the following example, we use two variables to allocate memory
 for a string. Initially, we allocate 16 bytes but only use the first 13
 bytes (12 hexadecimal digits and the null termination character
 (0)):
 char *string1;
 char *string2;
 string1 = (char*) malloc(16);
 strcpy(string1, "0123456789AB");
Next, we use the realloc
 function to specify a smaller region of memory. The address and contents
 of these two variables are then displayed:
 string2 = realloc(string1, 8);
 printf("string1 Value: %p [%s]\n", string1, string1);
 printf("string2 Value: %p [%s]\n", string2, string2);
The output follows:
string1 Value: 0x500 [0123456789AB]
string2 Value: 0x500 [0123456789AB]
The allocation of memory is illustrated in Figure 2-6.
[image: realloc example]

Figure 2-6. realloc example

The heap manager was able to reuse the original block, and it did
 not modify its contents. However, the program continued to use more than
 the eight bytes requested. That is, we did not change the string to fit
 into the eight-byte block. In this example, we should have adjusted the
 length of the string so that it fits into the eight reallocated bytes.
 The simplest way of doing this is to assign a NUL character to address 507. Using more space
 than allocated is not a good practice and should be avoided, as detailed
 in Chapter 7.
In this next example, we will reallocate additional memory:
 string1 = (char*) malloc(16);
 strcpy(string1, "0123456789AB");
 string2 = realloc(string1, 64);
 printf("string1 Value: %p [%s]\n", string1, string1);
 printf("string2 Value: %p [%s]\n", string2, string2);
When executed, you may get results similar to the
 following:
string1 Value: 0x500 [0123456789AB]
string2 Value: 0x600 [0123456789AB]
In this example, realloc had to
 allocate a new block of memory. Figure 2-7 illustrates the allocation of
 memory.
[image: Allocating additional memory]

Figure 2-7. Allocating additional memory

The alloca Function and Variable Length Arrays

The alloca function
 (Microsoft’s malloca) allocates
 memory by placing it in the stack frame for the function. When the function returns,
 the memory is automatically freed. This function can be difficult to
 implement if the underlying runtime system is not stack-based. As a
 result, this function is nonstandard and should be avoided if the
 application needs to be
 portable.
In C99, Variable Length Arrays (VLAs) were introduced,
 allowing the declaration and creation of an array within a function
 whose size is based on a variable. In the following example, an array of
 char is allocated for use in a
 function:
void compute(int size) {
 char* buffer[size];
 ...
}
This means the allocation of memory is done at runtime and memory
 is allocated as part of the stack frame. Also, when the sizeof operator is used with the array, it
 will be executed at runtime rather than compile time.
A small runtime penalty will be imposed. Also, when the function
 exits, the memory is effectively deallocated. Since we did not use a
 malloc type function to create it, we
 should not use the free function to
 deallocate it. The function should not return a pointer to this memory
 either. This issue is addressed in Chapter 5.
Note
VLAs do not change size. Their size is fixed once they are
 allocated. If you need an array whose size actually changes, then an
 approach such as using the realloc
 function, as discussed in the section Using the realloc Function, is needed.

Deallocating Memory Using the free Function

With dynamic memory allocation, the programmer is able to return
 memory when it is no longer being used, thus freeing it up for other uses.
 This is normally performed using the free function, whose prototype is shown
 below:
 void free(void *ptr);
The pointer argument should contain the address of memory allocated
 by a malloc type function. This memory
 is returned to the heap. While the pointer may still point to the region,
 always assume it points to garbage. This region may be reallocated later
 and populated with different data.
In the simple example below, pi
 is allocated memory and is eventually freed:
 int *pi = (int*) malloc(sizeof(int));
 ...
 free(pi);
Figure 2-8 illustrates
 the allocation of memory immediately before and right after the free function executes. The dashed box at
 address 500 that indicates the memory has been freed but still may contain
 its value. The variable pi still
 contains the address 500. This is called a dangling pointer and is
 discussed in detail in the section Dangling Pointers.
[image: Release of memory using free]

Figure 2-8. Release of memory using free

If the free function is passed a
 null pointer, then it normally does nothing. If the pointer passed has
 been allocated by other than a malloc
 type function, then the function’s behavior is undefined. In the following
 example, pi is allocated the address of
 num. However, this is not a valid heap
 address:
 int num;
 int *pi = #
 free(pi); // Undefined behavior
Note
Manage memory allocation/deallocation at the same level. For
 example, if a pointer is allocated within a function, deallocate it in
 the same function.

Assigning NULL to a Freed Pointer

Pointers can cause problems even after they have been freed. If we
 try to dereference a freed pointer, its behavior is undefined. As a
 result, some programmers will explicitly assign NULL to a pointer to designate the pointer as
 invalid. Subsequent use of such a pointer will result in a runtime
 exception.
An example of this approach follows:
 int *pi = (int*) malloc(sizeof(int));
 ...
 free(pi);
 pi = NULL;
The allocation of memory is illustrated in Figure 2-9.
[image: Assigning NULL after using free]

Figure 2-9. Assigning NULL after using free

This technique attempts to address problems like dangling
 pointers. However, it is better to spend time addressing the conditions
 that caused the problems rather than crudely catching them with a null
 pointer. In addition, you cannot assign NULL to a constant pointer except when it is
 initialized.

Double Free

The term double free refers to an
 attempt to free a block of memory twice. A simple example
 follows:
 int *pi = (int*) malloc(sizeof(int));
 *pi = 5;
 free(pi);
 ...
 free(pi);
The execution of the second free function will result in a runtime
 exception. A less obvious example involves the use of two pointers, both
 pointing to the same block of memory. As shown below, the same runtime
 exception will result when we accidentally try to free the same memory a
 second time:
 p1 = (int*) malloc(sizeof(int));
 int *p2 = p1;
 free(p1);
 ...
 free(p2);
This allocation of memory is illustrated in Figure 2-10.
Note
When two pointers reference the same location, it is referred to
 as aliasing. This concept is discussed in Chapter 8.

[image: Double free]

Figure 2-10. Double free

Unfortunately, heap managers have a difficult time determining
 whether a block has already been deallocated. Thus, they don’t attempt
 to detect the same memory being freed twice. This normally results in a corrupt heap and program
 termination. Even if the program does not terminate, it represents
 questionable problem logic. There is no reason to free the same memory
 twice.
It has been suggested that the free function should assign a NULL or some other special value to its
 argument when it returns. However, since pointers are passed by value,
 the free function is unable to
 explicitly assign NULL to the
 pointer. This is explained in more detail in the section Passing a Pointer to a Pointer.

The Heap and System Memory

The heap typically uses operating system functions to manage
 its memory. The heap’s size may be fixed when the program is created, or
 it may be allowed to grow. However, the heap manager does not
 necessarily return memory to the operating system when the free function is called. The deallocated
 memory is simply made available for subsequent use by the application.
 Thus, when a program allocates and then frees up memory, the
 deallocation of memory is not normally reflected in the application’s
 memory usage as seen from the operating system perspective.

Freeing Memory upon Program Termination

The operating system is responsible for maintaining the
 resources of an application, including its memory. When an application
 terminates, it is the operating system’s responsibility to reallocate
 this memory for other applications. The state of the terminated
 application’s memory, corrupted or uncorrupted, is not an issue. In
 fact, one of the reasons an application may terminate is because its
 memory is corrupted. With an abnormal program termination, cleanup may
 not be possible. Thus, there is no reason to free allocated memory
 before the application terminates.
With this said, there may be other reasons why this memory should
 be freed. The conscientious programmer may want to free memory as a
 quality issue. It is always a good habit to free memory after it is no
 longer needed, even if the application is terminating. If you use a tool
 to detect memory leaks or similar problems, then deallocating memory
 will clean up the output of such tools. In some less complex operating
 systems, the operating system may not reclaim memory automatically, and
 it may be the program’s responsibility to reclaim memory before
 terminating. Also, a later version of the application could add code
 toward the end of the program. If the previous memory has not been
 freed, problems could arise.
Thus, ensuring that all memory is free before program
 termination:
	May be more trouble than it’s worth

	Can be time consuming and complicated for the deallocation of
 complex structures

	Can add to the application’s size

	Results in longer running time

	Introduces the opportunity for more programming errors

Whether memory should be deallocated prior to program termination
 is application-specific.

Dangling Pointers

If a pointer still references the original memory after it has
 been freed, it is called a dangling pointer. The pointer does not point to
 a valid object. This is sometimes referred to as a premature free.
The use of dangling pointers can result in a number of different
 types of problems, including:
	Unpredictable behavior if the memory is accessed

	Segmentation faults when the memory is no
 longer accessible

	Potential security risks

These types of problems can result when:
	Memory is accessed after it has been freed

	A pointer is returned to an automatic variable in a previous
 function call (discussed in the section Pointers to Local Data)

Dangling Pointer Examples

Below is a simple example where we allocate memory for an integer
 using the malloc function. Next, the
 memory is released using the free
 function:
 int *pi = (int*) malloc(sizeof(int));
 *pi = 5;
 printf("*pi: %d\n", *pi);
 free(pi);
The variable pi will still hold
 the integer’s address. However, this memory may be reused by the heap
 manager and may hold data other than an integer. Figure 2-11 illustrates the program’s state immediately before
 and after the free function is
 executed. The pi variable is assumed
 to be part of the main function and
 is located at address 100. The memory allocated using malloc is found at address 500.
When the free function is
 executed, the memory at address 500 has been deallocated and should not
 be used. However, most runtime systems will not prevent subsequent
 access or modification. We may still attempt to write to the location as
 shown below. The result of this action is unpredictable.
 free(pi);
 *pi = 10;
[image: Dangling pointer]

Figure 2-11. Dangling pointer

A more insidious example occurs when more than one pointer
 references the same area of memory and one of them is freed. As shown
 below, p1 and p2 both refer to the same area of memory,
 which is called pointer aliasing. However, p1 is freed:
 int *p1 = (int*) malloc(sizeof(int));
 *p1 = 5;
 ...
 int *p2;
 p2 = p1;
 ...
 free(p1);
 ...
 *p2 = 10; // Dangling pointer
Figure 2-12 illustrates the allocation of memory
 where the dotted box represents freed memory.
[image: Dangling pointer with aliased pointers]

Figure 2-12. Dangling pointer with aliased pointers

A subtle problem can occur when using block statements, as shown
 below. Here pi is assigned the
 address of tmp. The variable pi may be a global variable or a local
 variable. However, when tmp’s
 enclosing block is popped off of the program stack, the address is no
 longer valid:
 int *pi;
 ...
 {
 int tmp = 5;
 pi = &tmp;
 }
 // pi is now a dangling pointer
 foo();
Most compilers will treat a block statement as a stack frame.
 The variable tmp was allocated on the
 stack frame and subsequently popped off the stack when the block
 statement was exited. The pointer pi
 is now left pointing to a region of memory that may eventually be
 overridden by a different activation record, such as the function
 foo. This condition is illustrated in
 Figure 2-13.
[image: Block statement problem]

Figure 2-13. Block statement problem

Dealing with Dangling Pointers

Debugging pointer-induced problems can be difficult to resolve at
 times. Several approaches exist for dealing with dangling pointers,
 including:
	Setting a pointer to NULL
 after freeing it. Its subsequent use will terminate the application.
 However, problems can still persist if multiple copies of the
 pointer exist. This is because the assignment will only affect one
 of the copies, as illustrated in the section Double Free.

	Writing special functions to replace the free function (see Writing your own free function).

	Some systems (runtime/debugger) will overwrite data when it is
 freed (e.g., 0xDEADBEEF - Visual Studio will use 0xCC, 0xCD, or
 0xDD, depending on what is freed). While no exceptions are thrown,
 when the programmer sees memory containing these values where they
 are not expected, he knows that the program may be accessing freed
 memory.

	Use third-party tools to detect dangling pointers and other
 problems.

Displaying pointer values can be helpful in debugging dangling
 pointers, but you need to be careful how they are displayed. We have
 already discussed how to display pointer values in Displaying Pointer Values. Make sure you display them
 consistently to avoid confusion when comparing pointer values. The
 assert macro can also be useful, as
 demonstrated in Dealing with Uninitialized Pointers.

Debug Version Support for Detecting Memory Leaks

Microsoft provides techniques for addressing overwriting of
 dynamically allocated memory and memory leaks. This approach uses
 special memory management techniques in debug versions of a program
 to:
	Check the heap’s integrity

	Check for memory leaks

	Simulate low heap memory situations

Microsoft does this by using a special data structure to manage
 memory allocation. This structure maintains debug information, such as
 the filename and line number where malloc is called. In addition, buffers are
 allocated before and after the actual memory allocation to detect
 overwriting of the actual memory. More information about this technique
 can be found at Microsoft Developer
 Network.
The Mudflap
 Libraries provide a similar capability for the GCC compiler. Its
 runtime library supports the detection of memory leaks, among other
 things. This detection is accomplished by instrumenting the pointer
 dereferencing operations.

Dynamic Memory Allocation Technologies

So far, we have talked about the heap manager’s allocating and
 deallocating memory. However, the implementation of this technology can
 vary by compiler. Most heap managers use a heap or data segment as the
 source for memory. However, this approach is subject to fragmentation and
 may collide with the program stack. Nevertheless, it is the most common
 way of implementing the heap.
Heap managers need to address many issues, such as whether heaps are
 allocated on a per process and/or per thread basis and how to protect the
 heap from security breaches.
There are a number of heap managers, including OpenBSD’s malloc,
 Hoard’s malloc, and TCMalloc developed by Google. The GNU C library
 allocator is based on the general-purpose allocator dlmalloc. It provides facilities for
 debugging and can help in tracking memory leaks. The dlmalloc’s logging
 feature tracks memory usage and memory transaction, among other
 actions.
A manual technique for managing the memory used for structures is
 presented in Avoiding malloc/free Overhead.
Garbage Collection in C

The malloc and free functions provide a way of manually
 allocating and deallocating memory. However, there are numerous issues
 regarding the use of manual memory management in C, such as performance,
 achieving good locality of reference, threading problems, and cleaning
 up memory gracefully.
Several nonstandard techniques can be used to address some of
 these issues, and this section explores some of them. A key feature of
 these techniques is the automatic deallocation of memory. When memory is
 no longer needed, it is collected and made available for use later in
 the program. The deallocated memory is referred to as garbage. Hence,
 the term garbage collection denotes the processing
 of this memory.
Garbage collection is useful for a number of reasons,
 including:
	Freeing the programmer from having to decide when to
 deallocate memory

	Allowing the programmer to focus on the application’s
 problem

One alternative to manual memory management is the Boehm-Weiser
 Collector. However, this is not part of the language.

Resource Acquisition Is Initialization

Resource Acquisition Is Initialization (RAII) is a technique
 invented by Bjarne Stroustrup. It
 addresses the allocation and deallocation of resources in C++. The
 technique is useful for guaranteeing the allocation and subsequent
 deallocation of a resource in the presence of exceptions. Allocated
 resources will eventually be released.
There have been several approaches for using RAII in C. The GNU
 compiler provides a nonstandard extension to support this. We will
 illustrate this extension by showing how memory can be allocated and
 then freed within a function. When the variable goes out of scope, the
 deallocation process occurs automatically.
The GNU extension uses a macro called RAII_VARIABLE. It declares a variable and
 associates with the
 variable:
	A type

	A function to execute when the variable is created

	A function to execute when the variable goes out of
 scope

The macro is shown below:
#define RAII_VARIABLE(vartype,varname,initval,dtor) \
 void _dtor_ ## varname (vartype * v) { dtor(*v); } \
 vartype varname __attribute__((cleanup(_dtor_ ## varname))) = (initval)
In the following example, we declare a variable called name as a pointer to char. When it is created, the malloc function is executed, allocating 32
 bytes to it. When the function is terminated, name goes out of scope and the free function is executed:
void raiiExample() {
 RAII_VARIABLE(char*, name, (char*)malloc(32), free);
 strcpy(name,"RAII Example");
 printf("%s\n",name);
}
When this function is executed, the string “RAII_Example” will be
 displayed.
Similar results can be
 achieved without using the GNU extension.

Using Exception Handlers

Another approach to deal with the deallocation of memory is to
 use exception handling. While
 exception handling is not a standard part of C, it can be useful if
 available and possible portability issues are not a concern.
 The following illustrates the approach using the Microsoft
 Visual Studio version of the C language.
Here the try block encloses any statements that might cause an
 exception to be thrown at runtime. The finally block will be executed
 regardless of whether an exception is thrown. The free function is guaranteed to be
 executed.
void exceptionExample() {
 int *pi = NULL;
 __try {
 pi = (int*)malloc(sizeof(int));
 *pi = 5;
 printf("%d\n",*pi);
 }
 __finally {
 free(pi);
 }
}
You can implement exception handling
 in C using several other approaches.

Summary

Dynamic memory allocation is a significant C language feature. In
 this chapter, we focused on the manual allocation of memory using the
 malloc and free functions. We addressed a number of common
 problems involving these functions, including the failure to allocate
 memory and dangling pointers.
There are other nonstandard techniques for managing dynamic memory
 in C. We touched on a few of these garbage collection techniques,
 including RAII and exception handling.

Chapter 3. Pointers and Functions

Pointers contribute immensely to a function’s capability. They allow
 data to be passed and modified by a function. Complex data can also be
 passed and returned from a function in the form of a pointer to a structure.
 When pointers hold the address of a function, they provide a means to
 dynamically control a program’s execution flow. In this chapter, we will
 explore the power of pointers as used with functions and learn how to use
 them to solve many real-world problems.
To understand functions and their use with pointers, a good
 understanding of the program stack is needed. The program stack is used by
 most modern block-structured languages, such as C, to support the execution
 of functions. When a function is invoked, its stack frame is created and
 then pushed onto the program stack. When the function returns, its stack
 frame is popped off of the program stack.
When working with functions, there are two areas where pointers become
 useful. The first is when we pass a pointer to a function. This allows the
 function to modify data referenced by the pointer and to pass blocks of
 information more efficiently.
The second area is declaring a pointer to a function. In essence,
 function notation is pointer notation. The function’s name evaluates to the
 address of the function, and the function’s parameters are passed to the
 function. As we will see, function pointers provide additional capability to
 control the execution flow of a program.
In this section, we will establish the foundation for understanding
 and working with functions and pointers. Because of the pervasiveness of
 functions and pointers, this foundation should serve you well.
Program Stack and Heap

The program stack and the heap are important runtime elements of C.
 In this section, we will carefully examine the structure and use of the
 program stack and heap. We will also look at the stack frame’s structure,
 which holds local variables.
Note
Local variables are also called automatic variables. They are
 always allocated to a stack
 frame.

Program Stack

The program stack is an area of memory that supports the
 execution of functions and is normally shared with the heap. That is,
 they share the same region of memory. The program stack tends to occupy
 the lower part of this region, while the heap uses the upper
 part.
The program stack holds stack
 frames, sometimes called activation
 records or activation frames. Stack
 frames hold the parameters and local variables of a function. The heap manages dynamic
 memory and is discussed in Dynamic Memory Allocation.
Figure 3-1 illustrates how the stack and heap
 are organized conceptually. This illustration is based on the following
 code sequence:
void function2() {
 Object *var1 = ...;
 int var2;
 printf("Program Stack Example\n");
}

void function1() {
 Object *var3 = ...;
 function2();
}

int main() {
 int var4;
 function1();
}
As functions are called, their stack frames are pushed onto the
 stack and the stack grows “upward.” When a function terminates, its
 stack frame is popped off the program stack. The memory used by the
 stack frame is not cleared and may eventually be overridden by another
 stack frame when it is pushed onto the program stack.
[image: Stack and heap]

Figure 3-1. Stack and heap

When memory is dynamically allocated, it comes from the heap,
 which tends to grow “downward.” The heap will fragment as memory is
 allocated and then deallocated. Although the heap tends to grow
 downward, this is a general direction. Memory can be allocated from
 anywhere within the heap.

Organization of a Stack Frame

A stack frame consists of several elements,
 including:
	Return address
	The address in the program where the function is to return
 upon completion

	Storage for local data
	Memory allocated for local variables

	Storage for parameters
	Memory allocated for the function’s parameters

	Stack and base pointers
	Pointers used by the runtime system to manage the
 stack

The typical C programmer will not be concerned about the stack and
 base pointers used in support of a stack frame. However, understanding
 what they are and how they are used provides a more in-depth
 understanding of the program stack.
A stack pointer usually points to the top of the stack. A stack
 base pointer (frame pointer) is often present and points to an address
 within the stack frame, such as the return address. This pointer assists
 in accessing the stack frame’s elements. Neither of these pointers are C
 pointers. They are addresses used by the runtime system to manage the
 program stack. If the runtime system is implemented in C, then these
 pointers may be real C pointers.
Consider the creation of a stack frame for the following function.
 This function has passed an array of integers and an integer
 representing the array’s size. Three printf statements are used to display the
 parameter’s and the local variable’s addresses:
float average(int *arr, int size) {
 int sum;
 printf("arr: %p\n",&arr);
 printf("size: %p\n",&size);
 printf("sum: %p\n",&sum);

 for(int i=0; i<size; i++) {
 sum += arr[i];
 }
 return (sum * 1.0f) / size;
}
When executed, you get output similar to the following:
arr: 0x500
size: 0x504
sum: 0x480
The gap in the addresses between the parameters and the local
 variables is due to other elements of the stack frame used by the
 runtime system to manage the stack.
When the stack frame is created, the parameters are pushed
 onto the frame in the opposite order of their declaration, followed by
 the local variables. This is illustrated in Figure 3-2. In this case, size is pushed followed by arr. Typically, the return address for the
 function call is pushed next, followed by the local variables. They are
 pushed in the opposite order in which they were listed.
Conceptually, the stack in this example grows “up.” However, the
 stack frame’s parameters and local variables and new stack frames are
 added at lower memory addresses. The actual direction the stack grows is
 implementation-specific.
[image: Stack frame example]

Figure 3-2. Stack frame example

The variable i used in the
 for statement is not included as part of this stack
 frame. C treats block statements as “mini” functions and will push
 and pop them as appropriate. In this case, the block statement is pushed
 onto the program stack above the average stack frame when it is executed and
 then popped off when it is done.
While the precise addresses can vary, the order usually will not.
 This is important to understand, as it helps explain how memory is
 allocated and establishes the relative order of the parameters and
 variables. This can be useful when debugging pointer problems. If you
 are not aware of how the stack frame is allocated, the assignment of
 addresses may not make sense.
As stack frames are pushed onto the program stack, the
 system may run out of memory. This condition is called stack overflow
 and generally results in the program terminating abnormally. Keep in mind that each thread is typically allocated its
 own program stack. This can lead to potential conflicts if one or more
 threads access the same object in memory. This will be
 addressed in Sharing Pointers Between Threads.

Passing and Returning by Pointer

In this section, we will examine the impact of passing and returning
 pointers to and from functions. Passing pointers allows the referenced
 object to be accessible in multiple functions without making the object
 global. This means that only those functions that need access to the
 object will get this access and that the object does not need to be
 duplicated.
If the data needs to be modified in a function, it needs to be
 passed by pointer. We can pass data by pointer and prohibit it from being
 modified by passing it as a pointer to a constant, as will be demonstrated
 in the section Passing a Pointer to a Constant. When
 the data is a pointer that needs to be modified, then we pass it as a
 pointer to a pointer. This topic is covered in Passing a Pointer to a Pointer.
Parameters, including pointers, are passed by value. That is, a copy of
 the argument is passed to the function. Passing a pointer to an argument
 can be efficient when dealing with large data structures. For example,
 consider a large structure that represents an employee. If we passed the
 entire structure to the function, then every byte of the structure would
 need to be copied, resulting in a slower program and in more space being
 used in the stack frame. Passing a pointer to the object means the object
 does have to be copied, and we can access the object through the
 pointer.
Passing Data Using a Pointer

One of the primary reasons for passing data using a pointer is to
 allow the function to modify the data. The following sequence implements
 a swap function that will interchange the values referenced by its
 parameters. This is a common operation found in a number of sorting
 algorithms. Here, we use integer pointers and dereference them to affect
 the swap operation:
void swapWithPointers(int* pnum1, int* pnum2) {
 int tmp;
 tmp = *pnum1;
 *pnum1 = *pnum2;
 *pnum2 = tmp;
}
The following code sequence demonstrates this function:
int main() {
 int n1 = 5;
 int n2 = 10;
 swapWithPointers(&n1, &n2);
 return 0;
}
The pointers pnum1 and pnum2 are dereferenced during the swap
 operation. This will result in the values of n1 and n2
 being modified. Figure 3-3 illustrates how
 memory is organized. The Before image
 shows the program stack at the beginning of the swap function, and the
 After image shows it just before the
 function returns.
[image: Swapping with pointers]

Figure 3-3. Swapping with pointers

Passing Data by Value

If we do not pass them by pointers, then the swap operation
 will not occur. In the following function, the two integers are passed
 by value:
void swap(int num1, int num2) {
 int tmp;
 tmp = num1;
 num1 = num2;
 num2 = tmp;
}
In the following code sequence, two integers are passed to the
 function:
int main() {
 int n1 = 5;
 int n2 = 10;
 swap(n1, n2);
 return 0;
}
However, this will not work because the integers were passed by
 value and not by pointer. Only a copy of the arguments is stored in
 num1 and num2. If we modify num1, then the argument n1 is not changed. When we modify the
 parameters, we are not modifying the original arguments. Figure 3-4 illustrates how memory is allocated for the
 parameters.
[image: Pass by value]

Figure 3-4. Pass by value

Passing a Pointer to a Constant

Passing a pointer to constant is a common technique used in C. It
 is efficient, as we are only passing the address of the data and can
 avoid copying large amounts of memory in some cases. However, with a
 simple pointer, the data can be modified. When this is not desirable,
 then passing a pointer to a constant is the answer.
In this example, we pass a pointer to a constant integer and a
 pointer to an integer. Within the function, we cannot modify the value
 passed as a pointer to a constant:
void passingAddressOfConstants(const int* num1, int* num2) {
 *num2 = *num1;
}

int main() {
 const int limit = 100;
 int result = 5;
 passingAddressOfConstants(&limit, &result);
 return 0;
}
No syntax errors will be generated, and the function will assign
 100 to the variable result. In the
 following version of the function, we attempt to modify both referenced
 integers:
void passingAddressOfConstants(const int* num1, int* num2) {
 *num1 = 100;
 *num2 = 200;
}
This will cause a problem if we pass the constant limit to the function twice:
 const int limit = 100;
 passingAddressOfConstants(&limit, &limit);
This will generate syntax errors that complain of a type mismatch
 between the second parameter and its argument. In addition, it will
 complain that we are attempting to modify the presumed constant
 referenced by the first parameter.
The function expected a pointer to an integer, but a pointer to an
 integer constant was passed instead. We cannot pass the address of an
 integer constant to a pointer to a constant, as this would allow a
 constant value to be modified. This is detailed in the section Constants and Pointers.
An attempt to pass the address of an integer literal as shown
 below will also generate a syntax error:
 passingAddressOfConstants(&23, &23);
In this case, the error message will indicate that an lvalue is required as the address-of
 operator’s operand. The concept of an lvalue is discussed in Dereferencing a Pointer Using the Indirection Operator.

Returning a Pointer

Returning a pointer is easy to do. We simply declare the return
 type to be a pointer to the appropriate data type. If we need to return
 an object from a function, the following two techniques are frequently
 used:
	Allocate memory within the function using malloc and return its address. The caller
 is responsible for deallocating the memory returned.

	Pass an object to the function where it is modified. This
 makes the allocation and deallocation of the object’s memory the
 caller’s responsibility.

First, we will illustrate the use of malloc type functions to allocate the memory
 returned. This is followed by an example where we return a pointer to a
 local object. This latter approach is not recommended. The approach
 identified in the second bullet is then illustrated in the sectionPassing Null Pointers.
In the following example, we define a function that is passed the
 size of an integer array and a value to initialize each element. The
 function allocates memory for an integer array, initializes the array to
 the value passed, and then returns the array’s address:
int* allocateArray(int size, int value) {
 int* arr = (int*)malloc(size * sizeof(int));
 for(int i=0; i<size; i++) {
 arr[i] = value;
 }
 return arr;
}
The following illustrates how this function can be used:
 int* vector = allocateArray(5,45);
 for(int i=0; i<5; i++) {
 printf("%d\n", vector[i]);
 }
Figure 3-5 illustrates how memory is
 allocated for this function. The Before image shows the program’s state right
 before the return statement is executed. The After image shows the program’s state after
 the function has returned. The variable vector now contains the address of the memory
 allocated in the function. While the arr variable went away when the function
 terminated, the memory referenced by the pointer does not go away. This
 memory will eventually need to be freed.
Although the previous example works correctly, several potential
 problems can occur when returning a pointer from a function,
 including:
	Returning an uninitialized pointer

	Returning a pointer to an invalid address

	Returning a pointer to a local variable

	Returning a pointer but failing to free it

The last problem is typified by the allocateArray function. Returning dynamically
 allocated memory from the function means the function’s caller is
 responsible for deallocating it. Consider the following example:
 int* vector = allocateArray(5,45);
 ...
 free(vector);
[image: Returning a pointer]

Figure 3-5. Returning a pointer

We must eventually free it once we are through using it. If
 we don’t, then we will have a memory leak.

Pointers to Local Data

Returning a pointer to local data is an easy mistake to make if you
 don’t understand how the program stack works. In the following example,
 we rework the allocateArray function
 used in the section Returning a Pointer. Instead
 of dynamically allocating memory for the array, we used a local
 array:
int* allocateArray(int size, int value) {
 int arr[size];
 for(int i=0; i<size; i++) {
 arr[i] = value;
 }
 return arr;
}
Unfortunately, the address of the array returned is no longer
 valid once the function returns because the function’s stack frame is
 popped off the stack. While each array element may still contain a 45,
 these values may be overwritten if another function is called. This is
 illustrated with the following sequence. Here, the printf function is invoked repeatedly,
 resulting in corruption of the array:
 int* vector = allocateArray(5,45);
 for(int i=0; i<5; i++) {
 printf("%d\n", vector[i]);
 }
Figure 3-6 illustrates how
 memory is allocated when this happens. The dashed box shows where other
 stack frames, such as those used by the printf function, may be pushed onto the
 program stack, thus corrupting the memory held by the array. The actual
 contents of that stack frame are implementation-dependent.
[image: Returning a pointer to local data]

Figure 3-6. Returning a pointer to local data

An alternative approach is to declare the arr variable as static. This will restrict the
 variable’s scope to the function but allocate it outside of the stack
 frame, eliminating the possibility of another function overwriting the
 variable’s value:
int* allocateArray(int size, int value) {
 static int arr[5];
 ...
}
However, this will not always work. Every time the allocateArray function is called, it will
 reuse the array. This effectively invalidates any previous calls to the
 function. In addition, the static array must be declared with a fixed
 size. This will limit the function’s ability to handle various array
 sizes.
If the function returns only a few possible values and it does not
 hurt to share them, then it can maintain a list of these values and
 return the appropriate one. This can be useful if we are returning a
 status type message, such as an error number that is not likely to be
 modified. In the section Returning Strings, an
 example of using global and static values is demonstrated.

Passing Null Pointers

In the following version of the allocateArray function, a pointer to an array
 is passed along with its size and a value that it will use to initialize
 each element of the array. The pointer is returned for convenience.
 Although this version of the function does not allocate memory, later
 versions will allocate memory:
int* allocateArray(int *arr, int size, int value) {
 if(arr != NULL) {
 for(int i=0; i<size; i++) {
 arr[i] = value;
 }
 }
 return arr;
}
When a pointer is passed to a function, it is always good practice
 to verify it is not null before using it.
The function can be invoked as follows:
 int* vector = (int*)malloc(5 * sizeof(int));
 allocateArray(vector,5,45);
If the pointer is NULL, then no action is performed and the
 program will execute without terminating abnormally.

Passing a Pointer to a Pointer

When a pointer is passed to a function, it is passed by value.
 If we want to modify the original pointer and not the copy of the
 pointer, we need to pass it as a pointer to a pointer. In the following
 example, a pointer to an integer array is passed, which will be assigned
 memory and initialized. The function will return the allocated memory
 back through the first parameter. In the function, we first allocate
 memory and then initialize it. The address of this allocated memory is
 intended to be assigned to a pointer to an int. To modify this pointer in the calling
 function, we need to pass the pointer’s address. Thus, the parameter is
 declared as a pointer to a pointer to an int. In the calling function, we need to pass
 the address of the pointer:
void allocateArray(int **arr, int size, int value) {
 arr = (int)malloc(size * sizeof(int));
 if(*arr != NULL) {
 for(int i=0; i<size; i++) {
 *(*arr+i) = value;
 }
 }
}
The function can be tested using the following code:
 int *vector = NULL;
 allocateArray(&vector,5,45);
The first parameter to allocateArray is passed as a pointer to a
 pointer to an integer. When we call the function, we need to pass a
 value of this type. This is done by passing the address of vector. The address returned by malloc is assigned to arr. Dereferencing a pointer to a pointer to
 an integer results in a pointer to an integer. Because this is the
 address of vector, we modify vector.
The memory allocation is illustrated in Figure 3-7. The Before image shows the stack’s state after
 malloc returns and the array is
 initialized. Likewise, the After
 image shows the stack’s state after the function returns.
Note
To easily identify problems such as memory leaks, draw a diagram
 of memory allocation.

[image: Passing a pointer to a pointer]

Figure 3-7. Passing a pointer to a pointer

The following version of the function illustrates why passing a
 simple pointer will not work:
void allocateArray(int *arr, int size, int value) {
 arr = (int*)malloc(size * sizeof(int));
 if(arr != NULL) {
 for(int i=0; i<size; i++) {
 arr[i] = value;
 }
 }
}
The following sequence illustrates using the function:
 int *vector = NULL;
 allocateArray(&vector,5,45);
 printf("%p\n",vector);
When the program is executed you will see 0x0 displayed because
 when vector is passed to the
 function, its value is copied into the parameter arr. Modifying arr has no effect on vector. When the function returns, the value
 stored in arr is not copied to
 vector. Figure 3-8 illustrates the allocation of memory. The
 Before malloc image shows the state
 of memory just before arr is assigned
 a new value. It contains the value of 500, which was passed to it from
 vector. The After malloc image shows the state of memory
 after the malloc function was
 executed in the allocateArray
 function and the array was initialized. The variable arr has been modified to point to a new place
 in the heap. The After return image
 shows the program stack’s state after the function returns. In addition,
 we have a memory leak because we have lost access to the block of memory
 at address 600.
[image: Passing pointers]

Figure 3-8. Passing pointers

Writing your own free function

Several issues surround the free function that encourage some
 programmers to create their own version of this function. The free function does not check the pointer
 passed to see whether it is NULL
 and does not set the pointer to NULL before it returns. Setting a pointer to
 NULL after freeing is a good
 practice.
Given the foundation provided in the section Passing and Returning by Pointer, the following
 illustrates one way of implementing your own free function that assigns a NULL value to
 the pointer. It requires that we use a pointer to a pointer:
void saferFree(void **pp) {
 if (pp != NULL && *pp != NULL) {
 free(*pp);
 *pp = NULL;
 }
}
The saferFree function calls
 the free function that actually
 deallocates the memory. Its parameter is declared as a pointer to a
 pointer to void. Using a pointer to
 a pointer allows us to modify the pointer passed. Using the void type allows all types of pointers to be
 passed. However, we get a warning if we do not explicitly cast the
 pointer type to void when we call the function. If we explicitly
 perform the cast, then the warning goes away.
The safeFree macro, shown
 below, calls the saferFree function
 with this cast and uses the address-of operator, thus alleviating the
 need for a function’s user to perform the cast and to pass the
 pointer’s address.
#define safeFree(p) saferFree((void**)&(p))
The next sequence illustrates the use of this macro:
int main() {
 int *pi;
 pi = (int*) malloc(sizeof(int));
 *pi = 5;
 printf("Before: %p\n",pi);
 safeFree(pi);
 printf("After: %p\n",pi);
 safeFree(pi);
 return (EXIT_SUCCESS);
}
Assuming malloc returned
 memory from address 1000, the output of this sequence will be 1000 and
 then 0. The second use of the safeFree macro with a NULL value does not terminate the
 application, as the function detects and ignores it.

Function Pointers

A function pointer is a pointer that holds the address of a
 function. The ability of pointers to point to functions turns out to be an
 important and useful feature of C. This provides us with another way of
 executing functions in an order that may not be known at compile time and
 without using conditional statements.
One concern regarding the use of function pointers is a
 potentially slower running program. The processor may not be able to use
 branch prediction in conjunction with pipelining. Branch prediction is a
 technique whereby the processor will guess which multiple execution
 sequences will be executed. Pipelining is a hardware technology commonly
 used to improve processor performance and is achieved by overlapping
 instruction execution. In this scheme, the processor will start processing
 the branch it believes will be executed. If the processor successfully
 predicts the correct branch, then the instructions currently in the
 pipeline will not have to be discarded.
This slowdown may or may not be realized. The use of function
 pointers in situations such as table lookups can mitigate performance
 issues. In this section, we will learn how to declare function pointers,
 see how they can be used to support alternate execution paths, and explore
 techniques that exploit their potential.
Declaring Function Pointers

The syntax for declaring a pointer to a function can be
 confusing when you first see it. As with many aspects of C, once you get
 used to the notation, things start falling into place. Let’s start with
 a simple declaration. Below, we declare a pointer to a function that is
 passed void and returns void:
 void (*foo)();
This declaration looks a lot like a function prototype. If we
 removed the first set of parentheses, it would appear to be a function
 prototype for the function foo, which
 is passed void and returns a pointer to void. However, the parentheses
 make it a function pointer with a name of foo. The asterisk indicates that it is a
 pointer. Figure 3-9 highlights the
 parts of a function pointer declaration.
[image: Function pointer declaration]

Figure 3-9. Function pointer declaration

Note
When function pointers are used, the programmer must be careful
 to ensure it is used properly because C does not check to see whether
 the correct parameters are passed.

Other examples of function pointer declarations are illustrated
 below:
int (*f1)(double); // Passed a double and
 // returns an int
void (*f2)(char*); // Passed a pointer to char and
 // returns void
double* (*f3)(int, int); // Passed two integers and
 // returns a pointer to a double
Note
One suggested naming convention for function pointers is to
 always begin their name with the prefix: fptr.

Do not confuse functions that return a
 pointer with function pointers. The following declares f4 as a function that returns a pointer to an
 integer, while f5 is a function
 pointer that returns an integer. The variable f6 is a function pointer that returns a
 pointer to an integer:
int *f4();
int (*f5)();
int* (*f6)();
The whitespace within these expressions can be rearranged so that
 it reads as follows:
int* f4();
int (*f5)();
It is clear that f4 is a
 function that returns a pointer to an integer. However, using
 parentheses with f5 clearly bind the
 “pointer” asterisk to the function name, making it a function pointer.

Using a Function Pointer

Below is a simple example using a function pointer where a function
 is passed an integer and returns an integer. We also define a square function that squares an integer and
 then returns the square. To simplify these examples, we ignore the
 possibility of integer overflow.
int (*fptr1)(int);

int square(int num) {
 return num*num;
}
To use the function pointer to execute the square function, we need to assign the
 square function’s address to the
 function pointer, as shown below. As with array names, when we use the
 name of a function by itself, it returns the function’s address. We also
 declare an integer that we will pass to the function:
 int n = 5;
 fptr1 = square;
 printf("%d squared is %d\n",n, fptr1(n));
When executed it will display: “5 squared is 25.” We could have
 used the address-of operator with the function name as follows, but it
 is not necessary and is redundant. The compiler will effectively ignore
 the address-of operator when used in this context.
 fptr1 = □
Figure 3-10 illustrates how memory is
 allocated for this example. We have placed the square function below the program stack. This
 is for illustrative purposes only. Functions are allocated in a
 different segment than that used by the program stack. The function’s
 actual location is normally not of interest.
[image: Location of functions]

Figure 3-10. Location of functions

It is convenient to declare a type definition for function
 pointers. This is illustrated below for the previous function pointer.
 The type definition looks a little bit strange. Normally, the type
 definition’s name is the declaration’s last element:
typedef int (*funcptr)(int);

...

funcptr fptr2;
fptr2 = square;
printf("%d squared is %d\n",n, fptr2(n));
Function Pointers and Strings provides an
 interesting example with respect to using a function pointer to control
 how an array of strings is sorted.

Passing Function Pointers

Passing a function pointer is easy enough to do. Simply use a
 function pointer declaration as a parameter of a function. We will
 demonstrate passing a function pointer using add, sub,
 and compute functions as declared
 below:
int add(int num1, int num2) {
 return num1 + num2;
}

int subtract(int num1, int num2) {
 return num1 - num2;
}

typedef int (*fptrOperation)(int,int);

int compute(fptrOperation operation, int num1, int num2) {
 return operation(num1, num2);
}
The following sequence demonstrates these functions:
 printf("%d\n",compute(add,5,6));
 printf("%d\n",compute(sub,5,6));
The output will be an 11 and a –1. The add and sub
 function’s addresses were passed to the compute function. These addresses were then
 used to invoke the corresponding operation. This example also shows how
 code can be made more flexible through the use of function pointers.

Returning Function Pointers

Returning a function pointer requires declaring the function’s
 return type as a function pointer. To demonstrate how this is done, we
 will reuse the add and sub function along with the type definition we
 developed in the section Passing Function Pointers.
We will use the following select function to return a function pointer
 to an operation based in a character input. It will return a pointer to
 either the add function or the
 subtract function, depending on the
 opcode passed:
fptrOperation select(char opcode) {
 switch(opcode) {
 case '+': return add;
 case '-': return subtract;
 }
}
The evaluate function ties
 these functions together. The function is passed two integers and a
 character representing the operation to be performed. It passes the
 opcode to the select function, which returns a pointer to
 the function to execute. In the return statement, it executes this
 function and returns the result:
int evaluate(char opcode, int num1, int num2) {
 fptrOperation operation = select(opcode);
 return operation(num1, num2);
}
This function is demonstrated with the following printf statements:
 printf("%d\n",evaluate('+', 5, 6));
 printf("%d\n",evaluate('-', 5, 6));
The output will be an 11 and a –1.

Using an Array of Function Pointers

Arrays of function pointers can be used to select the function
 to evaluate on the basis of some criteria. Declaring such an array is
 straightforward. We simply use the function pointer declaration as the
 array’s type, as shown below. The array is also initialized to all
 NULLs. When a block of initialization
 values are used with an array, its values will be assigned to
 consecutive elements of the array. If the number of values is less than
 the size of the array, as in this example, the value is used to
 initialize every element of the array:
typedef int (*operation)(int, int);
operation operations[128] = {NULL};
Alternatively, we can declare this array without using a
 typedef as shown below:
int (*operations[128])(int, int) = {NULL};
The intent of this array is to allow a character index to select a
 corresponding function to execute. For example, the '*' character will
 identify the multiplication function if it exists. We can use character
 indexes because a character literal is an integer. The 128 elements
 corresponds to the first 128 ASCII characters. We will use this
 definition in conjunction with the add and subtract functions developed in the section
 Returning Function Pointers.
Having initialized the array to all NULLs, we then assign the add and subtract functions to the elements
 corresponding to the plus and minus signs:
void initializeOperationsArray() {
 operations['+'] = add;
 operations['-'] = subtract;
}
The previous evaluate function
 is rewritten as evaluateArray.
 Instead of calling the select
 function to obtain a function pointer, we used the operations with the operation character as an
 index:
int evaluateArray(char opcode, int num1, int num2) {
 fptrOperation operation;
 operation = operations[opcode];
 return operation(num1, num2);
}
Test the functions using the following sequence:
 initializeOperationsArray();
 printf("%d\n",evaluateArray('+', 5, 6));
 printf("%d\n",evaluateArray('-', 5, 6));
The results of executing this sequence are 11 and –1. A more
 robust version of the evaluateArray
 function would check for null function pointers before trying to execute
 the function.

Comparing Function Pointers

Function pointers can be compared to one another using the
 equality and inequality operators. In the following example, we use the
 fptrOperator type definition and the
 add function from the section Passing Function Pointers. The add function is assigned to the fptr1 function pointer and then compared
 against the add function’s
 address:
 fptrOperation fptr1 = add;

 if(fptr1 == add) {
 printf("fptr1 points to add function\n");
 } else {
 printf("fptr1 does not point to add function\n");
 }
When this is executed, the output will verify that the pointer
 does point to the add
 function.
A more realistic example of where the comparison of function
 pointers would be useful involves an array of function pointers that
 represent the steps of a task. For example, we may have a series of
 functions that manipulate an array of inventory parts. One set of
 operations may be to sort the parts, calculate a cumulative sum of their
 quantities, and then display the array and sum. A second set of
 operations may be to display the array, find the most expensive and the
 least expensive, and then display their difference. Each operation could
 be defined by an array of pointers to the individual functions. A log
 operation may be present in both lists. The ability to compare two
 function pointers would permit the dynamic modification of an operation
 by deleting the operation, such as logging, by finding and then removing
 the function from the list.

Casting Function Pointers

A pointer to one function can be cast to another type. This
 should be done with care since the runtime system does not verify that
 parameters used by a function pointer are correct. It is also possible
 to cast a function pointer to a different function pointer and then
 back. The resulting pointer will be equal to the original pointer. The
 size of function pointers used are not necessarily the same. The
 following sequence illustrates this operation:
 typedef int (*fptrToSingleInt)(int);
 typedef int (*fptrToTwoInts)(int,int);
 int add(int, int);

 fptrToTwoInts fptrFirst = add;
 fptrToSingleInt fptrSecond = (fptrToSingleInt)fptrFirst;
 fptrFirst = (fptrToTwoInts)fptrSecond;
 printf("%d\n",fptrFirst(5,6));
This sequence, when executed, will display 11 as its
 output.
Warning
Conversion between function pointers and pointers to data is not
 guaranteed to work.

The use of void* is not
 guaranteed to work with function pointers. That is, we should not assign
 a function pointer to void* as shown
 below:
 void* pv = add;
However, when interchanging function pointers, it is common to see
 a “base” function pointer type as declared below. This declares fptrBase as a function pointer to a function,
 which is passed void and returns void:
 typedef void (*fptrBase)();
The following sequence demonstrate the use of this base pointer,
 which duplicates the previous example:
 fptrBase basePointer;
 fptrFirst = add;
 basePointer = (fptrToSingleInt)fptrFirst;
 fptrFirst = (fptrToTwoInts)basePointer;
 printf("%d\n",fptrFirst(5,6));
A base pointer is used as a placeholder to exchange function
 pointer values.
Warning
Always make sure you use the correct argument list for function
 pointers. Failure to do so will result in indeterminate
 behavior.

Summary

Understanding the program stack and heap structures contributes to a
 more detailed and thorough understanding of how a program works and how
 pointers behave. In this chapter, we examined the stack, the heap, and the
 stack frame. These concepts help explain the mechanics of passing and
 returning pointers to and from a function.
For example, returning a pointer to a local variable is bad because
 the memory allocated to the local variable will be overwritten by
 subsequent function calls. Passing a pointer to constant data is efficient
 and prevents the function from modifying the data passed. Passing a
 pointer to a pointer allows the argument pointer to be reassigned to a
 different location in memory. The stack and heap helped detail and
 illustrate this functionality.
Function pointers were also introduced and explained. This type of
 pointer is useful for controlling the execution sequence within an
 application by allowing alternate functions to be executed based on the
 application’s needs.

Chapter 4. Pointers and Arrays

An array is a fundamental data structure built into C. A thorough
 understanding of arrays and their use is necessary to develop effective
 applications. Misunderstandings of array and pointer usage can result in
 hard-to-find errors and less than optimal performance in applications. Array
 and pointer notations are closely related to each other and can frequently
 be used interchangeably in the right context.
A common misconception is that an array and a pointer are
 completely interchangeable. An array name is not a pointer. Although an
 array name can be treated as a pointer at times, and array notation can be
 used with pointers, they are distinct and cannot always be used in place of
 each other. Understanding this difference will help you avoid incorrect use
 of these notations. For example, although the name of an array used by
 itself will return the array’s address, we cannot use the name by itself as
 the target of an assignment.
Arrays support many parts of an application and can be single or
 multidimensional. In this chapter, we will address the fundamental aspects
 of arrays as they relate to pointers to provide you with a deep
 understanding of arrays and the various ways they can be manipulated with
 pointers. You will see their use in more advanced contexts throughout the
 book.
We start with a quick review of arrays and then examine the
 similarities and differences between array and pointer notation. Arrays can
 be created using malloc type functions.
 These functions provide more flexibility than that afforded by traditional
 array declarations. We will see how the realloc function can be used to change the amount
 of memory allocated for an array.
Dynamically allocating memory for an array can present challenges,
 especially when we are dealing with arrays with two or more dimensions, as
 we have to ensure that the array is allocated in contiguous memory.
We will also explore problems that can occur when passing and
 returning arrays. In most situations, the array’s size must be passed so the
 array can be properly handled in a function. There is nothing inherent in an
 array’s internal representation that determines its length. If we do not
 pass the length, the function has no standard means of knowing where the
 array ends. We will also examine how to create jagged arrays in C, although
 they are infrequently used. A jagged array is a two-dimensional array where
 each row may have a different number of columns.
To demonstrate these concepts, we will use a vector for
 single-dimensional arrays and a matrix for two-dimensional arrays. Vectors
 and matrices have found extensive use in many areas, including analyzing
 electromagnetic fields, weather prediction, and in mathematics.
Quick Review of Arrays

An array is a contiguous collection of homogeneous elements that can
 be accessed using an index. By contiguous, we mean the elements of the
 array are adjacent to one another in memory with no gaps between them. By
 homogeneous, we mean they are all of the same type. Array declarations use
 a set of brackets and can possess multiple dimensions.
Two-dimensional arrays are common, and we typically use the terms
 rows and columns to describe the position
 of an array’s element. Arrays with three or more dimensions are not as
 common but can be quite useful in some applications. A two-dimensional array is not to be confused with an array
 of pointers. They are similar but behave slightly differently, as will be
 shown in the sectionUsing a One-Dimensional Array of Pointers.
Variable length arrays were introduced in C99 version of C.
 Previously, techniques using the realloc function were used to support arrays
 whose sizes change. We illustrate the realloc function in the section Using the realloc Function to Resize an Array.
Note
Arrays have a fixed size. When we declare an array, we need to
 decide how big it should be. If we specify too many elements, we waste
 space. If we specify too few elements, we limit how many elements we can
 process. The realloc function and
 variable length arrays provide techniques for dealing with arrays whose
 size needs to change. With a little work, we can resize an array and use
 just the right amount of memory.

One-Dimensional Arrays

A one-dimensional array is a linear structure. It uses a
 single index to access its members. The following is a declaration of a five-element array of
 integers:
 int vector[5];
Array indexes start with 0 and end at one less than their declared
 size. Valid indexes for the array vector start at 0 and end at 4. However, C
 does not enforce these bounds. Using an invalid index for an array can
 result in unpredictable behavior. Figure 4-1 illustrates how the array is
 allocated in memory. Each element is four bytes in length and is
 uninitialized. Depending on the memory model used, as explained in Memory Models, the size may be different.
[image: Array memory allocation]

Figure 4-1. Array memory allocation

The internal representation of an array has no information about
 the number of elements it contains. The array name simply references a
 block of memory. Using the sizeof operator
 with an array will return the number of bytes allocated to the array. To
 determine the number of elements, we divide the array’s size by its
 element’s size, as illustrated below. This will display 5:
 printf("%d\n", sizeof(vector)/sizeof(int));
One-dimensional arrays can be readily initialized using a block type
 statement. In the following sequence, each element is initialized to an
 integer starting at one:
 int vector[5] = {1, 2, 3, 4, 5};

Two-Dimensional Arrays

Two-dimensional arrays use rows and columns to identify array elements.
 This type of array needs to be mapped to the one-dimension address space
 of main memory. In C this is achieved by using a row-column ordering
 sequence. The array’s first row is placed in memory followed by the
 second row, then the third row, and this ordering continues until the
 last row is placed in memory.
The following declares a two-dimensional array with two rows
 and three columns. The array is initialized using a block statement.
 Figure 4-2 illustrates how memory
 is allocated for this array. The diagram on the left shows how memory is
 mapped. The diagram on the right shows how it can be viewed
 conceptually:
 int matrix[2][3] = {{1,2,3},{4,5,6}};
[image: Two-dimensional array]

Figure 4-2. Two-dimensional array

A two-dimensional array is treated as an array of arrays. That is,
 when we access the array using only one subscript, we get a pointer to
 the corresponding row. This is demonstrated in the following code
 sequence where each row’s address and size is displayed:
 for (int i = 0; i < 2; i++) {
 printf("&matrix[%d]: %p sizeof(matrix[%d]): %d\n",
 i, &matrix[i], i, sizeof(matrix[i]));
 }
The following output assumes the array is located at address
 100. The size is 12 because each row has three elements of four bytes
 each:
&matrix[0]: 100 sizeof(matrix[0]): 12
&matrix[1]: 112 sizeof(matrix[1]): 12
In the section Pointers and Multidimensional Arrays, we will examine
 this behavior in more detail.

Multidimensional Arrays

Multidimensional arrays have two or more dimensions. As with
 two-dimensional arrays, multiple sets of brackets define the array’s
 type and size. In the following example, we define a three-dimensional
 array consisting of three rows, two columns, and a rank of four. The
 term rank is often used to denote the elements of
 the third dimension:
 int arr3d[3][2][4] = {
 {{1, 2, 3, 4}, {5, 6, 7, 8}},
 {{9, 10, 11, 12}, {13, 14, 15, 16}},
 {{17, 18, 19, 20}, {21, 22, 23, 24}}
 };
The elements are allocated contiguously in row-column-rank order
 as illustrated in Figure 4-3.
[image: Three-dimensional array]

Figure 4-3. Three-dimensional array

We will use these declarations in later examples.

Pointer Notation and Arrays

Pointers can be very useful when working with arrays. We can use
 them with existing arrays or to allocate memory from the heap and then
 treat the memory as if it were an array. Array notation and pointer
 notation can be used somewhat interchangeably. However, they are not
 exactly the same as detailed in the section Differences Between Arrays and Pointers.
When an array name is used by itself, the array’s address is
 returned. We can assign this address to a pointer as illustrated
 below:
 int vector[5] = {1, 2, 3, 4, 5};
 int *pv = vector;
The variable pv is a pointer to
 the first element of the array and not the array itself. When we first
 assigned a value to pv, we assigned the
 address of the array’s first element.
We can use either the array name by itself or use the
 address-of operator with the array’s first element as illustrated below.
 These are equivalent and will return the address of vector. Using the address-of operator is more
 verbose but also more explicit:
 printf("%p\n",vector);
 printf("%p\n",&vector[0]);
The expression &vector is
 sometimes used to obtain the address of an array. It differs from the
 other notations in that it returns a pointer to the entire array. The
 other two approaches yield a pointer to an integer. Instead of returning a
 pointer to an integer, it returns a pointer to an array of integers. The
 use of this type will be illustrated in the section Passing a Multidimensional Array.
We can also use array subscripts with pointers. Effectively, the
 notation pv[i] is evaluated as:
 *(pv + i)
The pointer pv contains the
 address of a block of memory. The bracket notation will take the address
 contained in pv and adds the value
 contained in the index i using pointer
 arithmetic. This new address is then dereferenced to return its
 contents.
As we discussed in the section Pointer Arithmetic, adding an integer to a pointer will
 increment the address it holds by the product of the integer and the data
 type’s size. The same is true if we add an integer to the name of an
 array. The following two statements are equivalent:
 *(pv + i)
 *(vector + i)
Assume the vector is located at
 address 100 and pv is located at
 address 96. Table 4-1 and Figure 4-4 illustrate the use of array subscripts
 and pointer arithmetic with both the array name and the pointer for
 various values.
Table 4-1. Array/pointer notation
	Value	Equivalent Expression
	92	&vector[-2]	vector - 2	&pv[-2]	pv - 2
	100	vector	vector+0	&pv[0]	pv
	100	&vector[0]	vector+0	&pv[0]	pv
	104	&vector[1]	vector + 1	&pv[1]	pv + 1
	140	&vector[10]	vector + 10	&pv[10]	pv + 10

[image: Array/pointer notation]

Figure 4-4. Array/pointer notation

When we add 1 to the array address we effectively add 4, the size of
 an integer, to the address since this is an array of integers. With the
 first and last operations, we addressed locations outside the array’s
 bounds. While this is not a good practice, it does emphasize the need to
 be careful when using indexes or pointers to access elements of an
 array.
Array notation can be thought of as a “shift and dereference”
 operation. The expression vector[2]
 means start with vector, which is a pointer to the beginning of the array,
 shift two positions to the right, and then dereference that location to
 fetch its value. Using the address-of operator in conjunction with array
 notation, as in &vector[2],
 essentially cancels out the dereferencing. It can be interpreted as go
 left two positions and then return that address.
The following demonstrates the use of pointers in the implementation
 of the scalar addition operation. This operation takes a value and
 multiplies it against each element of the vector:
 pv = vector;
 int value = 3;
 for(int i=0; i<5; i++) {
 *pv++ *= value;
 }
Differences Between Arrays and Pointers

There are several differences between the use of arrays and the
 use of pointers to arrays. In this section, we will use the vector array and pv pointer as defined below:
 int vector[5] = {1, 2, 3, 4, 5};
 int *pv = vector;
The code generated by vector[i]
 is different from the code generated by vector+i. The notation vector[i] generates machine code that starts
 at location vector,
 moves i
 positions from this location, and uses its content. The notation
 vector+i generates machine code that
 starts at location vector,
 adds i to the
 address, and then uses the contents at that address. While the result is
 the same, the generated machine code is different. This difference is
 rarely of significance to most programmers.
There is a difference when the sizeof operator is applied to an array and to
 a pointer to the same array. Applying the sizeof operator to vector will return 20, the number of bytes
 allocated to the array. Applying the sizeof operator against pv will return 4, the pointer’s size.
The pointer pv is an
 lvalue. An lvalue denotes the term used on the lefthand
 side of an assignment operator. An lvalue must be capable of being modified. An
 array name such as vector is not an
 lvalue and cannot be modified. The
 address assigned to an array cannot be changed . A pointer can be
 assigned a new value and reference a different section of memory.
Consider the following:
 pv = pv + 1;
 vector = vector + 1; // Syntax error
We cannot modify vector, only
 its contents. However, the expression vector+1 is fine, as demonstrated below:
 pv = vector + 1;

Using malloc to Create a One-Dimensional Array

If we allocate memory from the heap and assign the address to a
 pointer, there is no reason we cannot use array subscripts with the
 pointer and treat this memory as an array. In the following sequence, we
 duplicate the contents of the vector
 array used earlier:
 int *pv = (int*) malloc(5 * sizeof(int));
 for(int i=0; i<5; i++) {
 pv[i] = i+1;
 }
We could have used pointer notation as shown below; however,
 the array notation is often easier to follow:
 for(int i=0; i<5; i++) {
 *(pv+i) = i+1;
 }
Figure 4-5 illustrates how memory
 is allocated for this example.
[image: Array allocated from the heap]

Figure 4-5. Array allocated from the heap

This technique creates a region of memory and treats it as an array.
 Its size is determined at runtime. However, we need to remember to
 deallocate the memory when we are through with it.
Warning
In the previous example we used *(pv+i) instead of *pv+1.
 Since the dereference operator has higher precedence than the plus
 operator, the second expression’s pointer is dereferenced, giving us the
 value referenced by the pointer. We then add i to this integer value. This was not what was
 intended. In addition, when we use this expression as an lvalue, the compiler will complain. Thus, we
 need to force the addition to be performed first, followed by the
 dereference operation, in order for it to work correctly.

Using the realloc Function to Resize an Array

We can resize an existing array created using malloc with the realloc function. The essentials of the realloc function were detailed in Chapter 2. The C standard C99 supports variable length arrays. In some
 situations, this may prove to be a better solution than using the realloc function. If you are not using C99, then
 the realloc function will need to be
 used. Also, variable length arrays can only be declared as a member of a
 function. If the array is needed longer than the function’s duration, then
 realloc will need to be used.
To illustrate the realloc
 function, we will implement a function to read in characters from standard
 input and assign them to a buffer. The buffer will contain all of the
 characters read in except for a terminating return character. Since we do
 not know how many characters the user will input, we do not know how long
 the buffer should be. We will use the realloc function to allocate additional space by
 a fixed increment amount. The code to implement this function is shown
 below:
char* getLine(void) {
 const size_t sizeIncrement = 10;
 char* buffer = malloc(sizeIncrement);
 char* currentPosition = buffer;
 size_t maximumLength = sizeIncrement;
 size_t length = 0;
 int character;

 if(currentPosition == NULL) { return NULL; }

 while(1) {
 character = fgetc(stdin);
 if(character == '\n') { break; }

 if(++length >= maximumLength) {
 char *newBuffer = realloc(buffer, maximumLength += sizeIncrement);

 if(newBuffer == NULL) {
 free(buffer);
 return NULL;
 }

 currentPosition = newBuffer + (currentPosition - buffer);
 buffer = newBuffer;
 }
 *currentPosition++ = character;
 }
 *currentPosition = '\0';
 return buffer;
}
We will start by defining a series of declarations as summarized in
 Table 4-2.
Table 4-2. getLine variables
	sizeIncrement	The size of the initial buffer and the amount it will be
 incremented by when the buffer needs to be enlarged
	buffer	A pointer to the characters read in
	currentPosition	A pointer to the next free position in the buffer
	maximumLength	The maximum number of characters that can be safely stored
 in the buffer
	length	The number of characters read in
	character	The last character read in

The buffer is created with a size of sizeIncrement. If the malloc
 function is unable to allocate memory, the first if
 statement will force the function to return NULL. An infinite loop is entered where the
 characters are processed one at a time. When the loop exits, a NUL is
 added to terminate the string and the buffer’s address is returned.
Within the while loop, a character is read in. If
 it is a carriage return, the loop is exited. Next, the
 if statement determines whether we have exceeded the
 buffer’s size. Otherwise, the character is added to the current position
 within the buffer.
If we have exceeded the buffer’s size, the realloc function creates a new block of memory.
 This block is sizeIncrement bytes
 larger than the old one. If it is unable to allocate memory, we free up
 the existing allocated memory and force the function to return NULL. Otherwise, currentPosition is adjusted to point to the
 right position within the new buffer and we assign the variable buffer to
 point to the newly allocated buffer. The realloc function will not necessarily keep your
 existing memory in place, so you have to use the pointer it returns to
 figure out where your new, resized memory block is.
The variable newBuffer holds the
 allocated memory’s address. We needed a separate variable, not buffer, in case the realloc was unable to allocate memory. This
 allows us to detect and handle the condition.
We did not free buffer if
 realloc was successful because realloc will copy the original buffer to the new
 buffer and free up the old buffer. If we had tried to free buffer, then it would normally result in the
 program’s termination because we tried to free the same block of memory
 twice.
Figure 4-6
 illustrates memory being allocated for the getLine function with an input string of “Once
 upon a time there was a giant pumpkin.” The program stack has been
 simplified to ignore the local variables except for buffer and currentPosition. The buffer has been extended
 four times, as indicated by the rectangle containing the input
 string.
[image: Memory allocation for getLine function]

Figure 4-6. Memory allocation for getLine function

The realloc function can also be
 used to decrease the amount of space used by a pointer. To illustrate its
 use, the trim function shown below will
 remove leading blanks in a string:
char* trim(char* phrase) {
 char* old = phrase;
 char* new = phrase;

 while(*old == ' ') {
 old++;
 }

 while(*old) {
 *(new++) = *(old++);
 }
 *new = 0;
 return (char*) realloc(phrase,strlen(phrase)+1);
}

int main() {
 char* buffer = (char*)malloc(strlen(" cat")+1);
 strcpy(buffer," cat");
 printf("%s\n",trim(buffer));
}
The first while loop uses the tmp variable to skip over any leading blanks.
 The second while loop copies the remaining characters
 in the string to the beginning of the string. It will evaluate to true
 until NUL is reached, which will
 evaluate to false. A zero is then added to terminate the string. The
 realloc function is then used to
 reallocate the memory based on the string’s new length.
Figure 4-7 illustrates the function’s use
 with an original string of “cat.” The state of string before and after the
 trim function executes is shown. The
 memory in red is the old memory and should not be accessed.
[image: Realloc example]

Figure 4-7. Realloc example

Passing a One-Dimensional Array

When a one-dimensional array is passed to a function, the
 array’s address is passed by value. This makes the transfer of information
 more efficient since we are not passing the entire array and having to
 allocate memory in the stack for it. Normally, this means the array’s size
 must be passed. If we don’t, from the function’s perspective all we have
 is the address of an array with no indication of its size.
Unless there is something integral to the array to tell us its
 bounds, we need to pass the size information when we pass the array. In
 the case of a string stored in an array, we can rely on the NUL termination character to tell us when we can
 stop processing the array. We will examine this in Chapter 5. Generally, if we do not know the
 array’s size, we are unable to process its elements and can wind up
 working with too few elements or treating memory outside of the array as
 if it were part of the array. This will frequently result in abnormal
 program termination.
We can declare the array in the function declaration using one of
 two notations: array notation or pointer notation.
Using Array Notation

In the following example, an integer array is passed to a
 function along with its size. Its contents are then displayed:
void displayArray(int arr[], int size) {
 for (int i = 0; i < size; i++) {
 printf("%d\n", arr[i]);
 }
}

 int vector[5] = {1, 2, 3, 4, 5};
 displayArray(vector, 5);
The sequence’s output will be the numbers 1 through 5.We passed
 the number 5 to the function that indicates its size. We could have
 passed any positive number and the function would attempt to display the
 corresponding number of elements, regardless of whether the size was
 correct. The program may terminate if we attempt to address memory
 outside of the array’s bounds. The memory allocation for this example is
 shown in Figure 4-8.
[image: Using array notation]

Figure 4-8. Using array notation

Warning
A common mistake is to use the sizeof operator with the array in order to
 determine its number of elements, as shown below. However, as
 explained in the sectionOne-Dimensional Arrays,
 this is not the correct way of determining its size. In this case, we
 would be passing the value of 20 to the array.
 displayArray(arr, sizeof(arr));

It is a common practice to pass a size smaller than the actual
 number of elements in an array. This is done to process only part of an
 array. For example, assume we read in a series of ages into an array but
 did not fill up the array. If we called a sort
 function to sort it, we would only want to sort the valid ages, not
 every array element.

Using Pointer Notation

We do not have to use the bracket notation when declaring an
 array parameter of a function. Instead, we can use pointer notation as
 follows:
void displayArray(int* arr, int size) {
 for (int i = 0; i < size; i++) {
 printf("%d\n", arr[i]);
 }
}
We continued to use array notation within the function. If
 desired, we could have used pointer notation in the function:
void displayArray(int* arr, int size) {
 for (int i = 0; i < size; i++) {
 printf("%d\n", *(arr+i));
 }
}
If we had used array notation to declare the function, we could
 have still used pointer notation in the function’s body:
void displayArray(int arr[], int size) {
 for (int i = 0; i < size; i++) {
 printf("%d\n", *(arr+i));
 }
}

Using a One-Dimensional Array of Pointers

In this section, we will examine the key aspects of using an
 array of pointers by using an array of pointers to integer. Examples of
 array of pointers can also be found in:
	Using an Array of Function Pointers, where
 we use an array of function pointers;

	How Memory Is Allocated for a Structure,
 where an array of structures is used; and

	Passing Arguments to an Application, where
 the argv array is handled.

The purpose of this section is to set the stage for later examples
 by illustrating the essence of the approach. The following sequence
 declares an array of integer pointers, allocates memory for each element,
 and initializes this memory to the array’s index:
 int* arr[5];
 for(int i=0; i<5; i++) {
 arr[i] = (int*)malloc(sizeof(int));
 *arr[i] = i;
 }
If this array was displayed, the numbers 0 through 4 would be
 printed. We used arr[i] to reference
 the pointer and *arr[i] to assign a
 value to the location referenced by the pointer. Do not let the use of
 array notation confuse you. Since arr
 was declared as an array of pointers, arr[i] returns an address. When we dereference a
 pointer such as *arr[i], we get the
 contents at that address.
We could have used the following equivalent pointer notation
 for the loop’s body:
 (arr+i) = (int)malloc(sizeof(int));
 **(arr+i) = i;
This notation is harder to follow, but understanding it will further
 your C expertise. We are using two levels of indirection in the second
 statement. Mastery of this type of notation will separate you from the
 less experienced C programmers.
The subexpression (arr+i)
 represents the address of the array’s ith
 element. We need to modify the content of this address so we use the
 subexpression *(arr+i). The allocated memory is
 assigned to this location in the first statement. Dereferencing this
 subexpression a second time, as we do in the second statement, returns the
 allocated memory’s location. We then assign the variable i to it. Figure 4-9
 illustrates how memory is allocated.
For example, arr[1] is located at address 104.
 The expression (arr+1) will give us 104. Using
 *(arr+1) gives us its content. In this example, it is
 the pointer 504. Dereferencing this a second time using
 **(arr+1) gives us the contents of 504, which is a
 1.
[image: Array of pointers]

Figure 4-9. Array of pointers

Example expressions are listed in Table 4-3. Reading pointer expression from left to
 right and not ignoring parentheses can help in understanding how they
 work.
Table 4-3. Array of pointers expressions
	Expression	Value
	*arr[0]	0
	**arr	0
	**(arr+1)	1
	arr[0][0]	0
	arr[3][0]	3

The first three expressions are similar to those in the previous
 explanation. The last two are different. The use of a pointer to a pointer
 notation suggests we are dealing with an array of pointers. In effect,
 this is what we are doing. If we reexamine Figure 4-9 and pretend each element of arr points to an array of size one, then the
 last two expressions make sense. What we have is a five-element array of
 pointers to a series of one-element arrays.
The expression arr[3][0] refers to the fourth
 element of arr and then the first element of the array it points to. The
 expression arr[3][1] does not work because the array
 the fourth element is pointing to does not have two elements.
This suggests the ability to create jagged arrays. This is indeed
 possible and is the subject of the sectionJagged Arrays and Pointers.

Pointers and Multidimensional Arrays

Parts of multidimensional arrays can be treated as subarrays. For
 example, each row of a two-dimensional array can be treated as a
 one-dimensional array. This behavior affects how we use pointers when
 dealing with multidimensional arrays.
To illustrate this behavior, we create a two-dimensional array and
 initialize it as follows:
 int matrix[2][5] = {{1,2,3,4,5},{6,7,8,9,10}};
The addresses and their corresponding values are then
 displayed:
 for(int i=0; i<2; i++) {
 for(int j=0; j<5; j++) {
 printf("matrix[%d][%d] Address: %p Value: %d\n",
 i, j, &matrix[i][j], matrix[i][j]);
 }
 }
The output follows:
matrix[0][0] Address: 100 Value: 1
matrix[0][1] Address: 104 Value: 2
matrix[0][2] Address: 108 Value: 3
matrix[0][3] Address: 112 Value: 4
matrix[0][4] Address: 116 Value: 5
matrix[1][0] Address: 120 Value: 6
matrix[1][1] Address: 124 Value: 7
matrix[1][2] Address: 128 Value: 8
matrix[1][3] Address: 132 Value: 9
matrix[1][4] Address: 136 Value: 10
The array is stored in row-column order. That is, the first row is
 stored sequentially in memory followed by the second row. The memory
 allocation is illustrated in Figure 4-10.
We can declare a pointer for use with this array as follows:
 int (*pmatrix)[5] = matrix;
[image: Two-dimensional array memory allocation]

Figure 4-10. Two-dimensional array memory allocation

The expression, (*pmatrix),
 declares a pointer to an array. Combined with the rest of the declaration,
 pmatrix is defined as a pointer to a
 two-dimensional array of integers with five elements per column. If we had
 left the parentheses off, we would have declared a five-element array of
 pointers to integers. The size of the first dimension is 2 since we know
 the dimensions of the matrix. If a
 different size is used to access the array, then the results are
 unpredictable.
If we want to access the second element, 2, using pointer
 notation, it might seem reasonable to use the following:
 printf("%p\n", matrix);
 printf("%p\n", matrix + 1);
The output follows:
100
120
The address returned by matrix+1
 is not offset by 4 from the beginning of the array. Instead, it is offset
 by the first row’s size, 20 bytes. Using matrix by itself returns the address of the
 array’s first element. Since a two-dimensional array is an array of
 arrays, we get the address of a five-element integer array. Its size is
 20. We can verify this with the following statement, which will display
 20:
 printf("%d\n",sizeof(matrix[0])); // Displays 20
To access the array’s second element, we need to add 1 to the first
 row of the array as follows: *(matrix[0] +
 1). The expression, matrix[0], returns the address of the first
 element of the first row of the array. This address is the address of an
 array of integers. Thus, when we add one to it, the size of a single
 integer is added to it, giving us the second element. The output will be
 104 and 2.
 printf("%p %d\n", matrix[0] + 1, *(matrix[0] + 1));
We can graphically depict the array as illustrated in Figure 4-11.
[image: Graphically depiction of a two-dimensional array]

Figure 4-11. Graphically depiction of a two-dimensional array

Two-dimensional array notation can be interpreted as shown in Figure 4-12.
[image: Two-dimensional array notation]

Figure 4-12. Two-dimensional array notation

Passing a Multidimensional Array

Passing a multidimensional array to a function can be confusing,
 especially when pointer notation is used. When passing a multidimensional
 array, we need to determine whether to use array notation or pointer
 notation in the function’s signature. Another consideration is how to
 convey the array’s shape. By shape, we are referring to the number and
 size of its dimensions. If we want to use array notation within the
 function, it is imperative to specify the array’s shape. Otherwise, the
 compiler is unable to use subscripts.
To pass the matrix array,
 use either:
void display2DArray(int arr[][5], int rows) {
or:
void display2DArray(int (*arr)[5], int rows) {
In both versions the number of columns is specified. This is needed
 because the compiler needs to know the number of elements in each row. If
 this information is not passed, then it is unable to evaluate expressions
 such as arr[0][3] as explained in the section Pointers and Multidimensional Arrays.
In the first version, the expression arr[] is an
 implicit declaration of a pointer to an array. In the second version, the
 expression (*arr) is an explicit declaration of the
 pointer.
Warning
The following declaration will not work correctly:
void display2DArray(int *arr[5], int rows) {
While it will not generate a syntax error, the array passed is
 assumed to be a five-element array of pointers to integers. Using a One-Dimensional Array of Pointers discusses arrays of
 pointers.

A simple implementation of this function and invocation
 follows:
void display2DArray(int arr[][5], int rows) {
 for (int i = 0; i<rows; i++) {
 for (int j = 0; j<5; j++) {
 printf("%d", arr[i][j]);
 }
 printf("\n");
 }
}

void main() {
 int matrix[2][5] = {
 {1, 2, 3, 4, 5},
 {6, 7, 8, 9, 10}
 };
 display2DArray(matrix, 2);
}
The function does not allocate memory for the array. Only the
 address is passed. The program stack’s state for this call is shown in
 Figure 4-13.
[image: Passing multidimensional array]

Figure 4-13. Passing multidimensional array

You may encounter a function declared as follows. It is passed a
 single pointer and the number of rows and columns:
void display2DArrayUnknownSize(int *arr, int rows, int cols) {
 for(int i=0; i<rows; i++) {
 for(int j=0; j<cols; j++) {
 printf("%d ", *(arr + (i*cols) + j));
 }
 printf("\n");
 }
}
The printf statement calculates
 the address of each element by adding to arr the number of elements in the previous
 row(s), (i*cols), and then adding
 j to specify the column. To invoke the
 function, we can use the following:
 display2DArrayUnknownSize(&matrix[0][0], 2, 5);
Within the function, we cannot use array subscripts as shown
 below:
 printf("%d ", arr[i][j]);
This is not possible because the pointer is not declared as a
 two-dimensional array. However, it is possible to use array notation as
 shown below. We can use a single subscript since it will be interpreted
 simply as an offset within the array, whereas two subscripts cannot be
 used because the compiler doesn’t know the size of the dimensions:
 printf("%d ", (arr+i)[j]);
The first element’s address is passed using &matrix[0][0] instead of matrix. While using matrix will execute correctly, a warning will be
 generated, indicating incompatible pointer types. The expression &matrix[0][0] is a pointer to an integer,
 whereas matrix is
 a pointer to an array of integers.
When passing an array with more than two dimensions, all but the
 size of the first dimension need to be specified. The following
 demonstrates a function written to display a three-dimensional array. The
 last two dimensions are specified in the declaration:
void display3DArray(int (*arr)[2][4], int rows) {
 for(int i=0; i<rows; i++) {
 for(int j=0; j<2; j++) {
 printf("{");
 for(int k=0; k<4; k++) {
 printf("%d ", arr[i][j][k]);
 }
 printf("}");
 }
 printf("\n");
 }
}
The following code shows the function’s invocation:
 int arr3d[3][2][4] = {
 {{1, 2, 3, 4}, {5, 6, 7, 8}},
 {{9, 10, 11, 12}, {13, 14, 15, 16}},
 {{17, 18, 19, 20}, {21, 22, 23, 24}}
 };

 display3DArray(arr3d,3);
The output follows:
{1 2 3 4 }{5 6 7 8 }
{9 10 11 12 }{13 14 15 16 }
{17 18 19 20 }{21 22 23 24 }
Allocation of the array’s memory is depicted in Figure 4-14.
[image: Three-dimensional array]

Figure 4-14. Three-dimensional array

The expression arr3d[1] refers to
 the array’s second row and is a pointer to a two-dimensional array with
 two rows and four columns. The expression arr3d[1][0] refers to the second row, first
 column of the array and is a pointer to a one-dimensional array of
 size 5.

Dynamically Allocating a Two-Dimensional Array

Several issues are involved with dynamically allocating memory for
 a two-dimensional array, including:
	Whether the array elements need to be contiguous

	Whether the array is jagged

Memory is allocated contiguously when a two-dimensional array is
 declared as follows:
 int matrix[2][5] = {{1,2,3,4,5},{6,7,8,9,10}};
However, when we use a function such as malloc to create a two-dimensional array, there
 are variations in how memory can be allocated. Since a two-dimensional
 array can be treated as an array of arrays, there is no reason the “inner”
 arrays need to be contiguous. When array subscripts are used with such an
 array, the array’s noncontiguous nature is handled transparently.
Note
Whether or not it is contiguous can affect other operations, such
 as copying a block of memory. Multiple copies may be required if the
 memory is not contiguous.

Allocating Potentially Noncontiguous Memory

The following illustrates one way of allocating a two-dimensional
 array where the allocated memory is not guaranteed to be contiguous.
 First, the “outer” array is allocated and then each row is allocated
 using separate malloc
 statements:
 int rows = 2;
 int columns = 5;

 int **matrix = (int **) malloc(rows * sizeof(int *));

 for (int i = 0; i < rows; i++) {
 matrix[i] = (int *) malloc(columns * sizeof(int));
 }
Since separate malloc calls
 were used, the allocated memory is not guaranteed to be contiguous. This
 is illustrated in Figure 4-15.
[image: Noncontiguous allocation]

Figure 4-15. Noncontiguous allocation

The actual allocation depends on the heap manager and the heap’s
 state. It may well be contiguous.

Allocating Contiguous Memory

We will present two approaches for allocating contiguous memory
 for a two-dimensional array. The first technique allocates the “outer”
 array first and then all of the memory for the rows. The second
 technique allocates all of the memory at once.
The first technique is illustrated in the following sequence. The
 first malloc allocates an array of
 pointers to integers. Each element will be used to hold a pointer to a
 row. This is the block allocated at address 500 in Figure 4-16. The second
 malloc allocates memory for all of
 the elements of the array at location 600. In the for
 loop, each element of the first array is assigned a portion of the
 memory allocated by the second malloc:
 int rows = 2;
 int columns = 5;
 int **matrix = (int **) malloc(rows * sizeof(int *));
 matrix[0] = (int *) malloc(rows * columns * sizeof(int));
 for (int i = 1; i < rows; i++)
 matrix[i] = matrix[0] + i * columns;
[image: Contiguous allocation with two malloc calls]

Figure 4-16. Contiguous allocation with two malloc calls

Technically, the memory for the first array may be separated from
 the memory for the array’s “body.” However, a contiguous region of
 memory is allocated for the body.
In the second technique shown below, all of the memory for the
 array is allocated at one time:
 int *matrix = (int *)malloc(rows * columns * sizeof(int));
This allocation is illustrated in Figure 4-17.
[image: Contiguous allocation with a single malloc call]

Figure 4-17. Contiguous allocation with a single malloc call

When the array is referenced later in code, array subscripts
 cannot be used. Instead, indexes into the array need to be calculated
 manually, as illustrated in the following code sequence. Each array
 element is initialized to the product of its indexes:
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < columns; j++) {
 *(matrix + (i*columns) + j) = i*j;
 }
 }
Array subscripts cannot be used because we have lost the shape
 information needed by the compiler to permit subscripts. This concept is
 explained in the section Passing a Multidimensional Array.
This approach has limited use in the real world, but it does
 illustrate the relationship between the concept of a two-dimensional
 array and the one-dimensional nature of main memory. The more convenient
 two-dimensional array notation makes this mapping transparent and easier
 to use.
We have demonstrated two general approaches for allocating
 contiguous memory for a two-dimensional array. The approach to use
 depends on the needs of the application. However, the last approach
 generates a single block of memory for the “entire” array.

Jagged Arrays and Pointers

A jagged array is a two-dimensional array possessing a
 different number of columns for each row. Conceptually, this is
 illustrated in Figure 4-18, where the array has three
 rows with a varying number of columns per row.
[image: Jagged array]

Figure 4-18. Jagged array

Before we learn how to create such an array, let’s examine a
 two-dimensional array created using compound
 literals. A compound literal is a C construct that consists of
 what appears to be a cast operator followed by an initializer list
 enclosed in braces. An example of a compound literal follows for both a
 constant integer and an array of integers. These would be used as part of
 a declaration:
(const int) {100}
(int[3]) {10, 20, 30}
In the following declaration, we create the array arr1 by declaring it as an array of pointers to
 an integer and using a block statement of compound literals to initialize
 it:
 int (*(arr1[])) = {
 (int[]) {0, 1, 2},
 (int[]) {3, 4, 5},
 (int[]) {6, 7, 8}};
This array has three rows and three columns. The array’s elements
 are initialized with the value 0 through 8 in row column order. Figure 4-19 depicts how memory is laid out for this
 array.
[image: Two-dimensional array]

Figure 4-19. Two-dimensional array

The following sequence displays the addresses and values of each
 array element:
 for(int j=0; j<3; j++) {
 for(int i=0; i<3; i++) {
 printf("arr1[%d][%d] Address: %p Value: %d\n",
 j, i, &arr1[j][i], arr1[j][i]);
 }
 printf("\n");
 }
When executed, we will get the following output:
arr1[0][0] Address: 0x100 Value: 0
arr1[0][1] Address: 0x104 Value: 1
arr1[0][2] Address: 0x108 Value: 2

arr1[1][0] Address: 0x112 Value: 3
arr1[1][1] Address: 0x116 Value: 4
arr1[1][2] Address: 0x120 Value: 5

arr1[2][0] Address: 0x124 Value: 6
arr1[2][1] Address: 0x128 Value: 7
arr1[2][2] Address: 0x132 Value: 8
This declaration can be modified slightly to create a jagged array
 as depicted in Figure 4-18. The array declaration
 follows:
 int (*(arr2[])) = {
 (int[]) {0, 1, 2, 3},
 (int[]) {4, 5},
 (int[]) {6, 7, 8}};
We used three compound literals to declare the jagged array. The
 array’s elements are initialized in row-column order starting with a value
 of zero. The next sequence will display the array to verify its creation.
 The sequence required three for loops because each row
 had a different number of columns:
 int row = 0;
 for(int i=0; i<4; i++) {
 printf("layer1[%d][%d] Address: %p Value: %d\n",
 row, i, &arr2[row][i], arr2[row][i]);
 }
 printf("\n");

 row = 1;
 for(int i=0; i<2; i++) {
 printf("layer1[%d][%d] Address: %p Value: %d\n",
 row, i, &arr2[row][i], arr2[row][i]);
 }
 printf("\n");

 row = 2;
 for(int i=0; i<3; i++) {
 printf("layer1[%d][%d] Address: %p Value: %d\n",
 row, i, &arr2[row][i], arr2[row][i]);
 }
 printf("\n");
The output of this sequence follows:
arr2[0][0] Address: 0x000100 Value: 0
arr2[0][1] Address: 0x000104 Value: 1
arr2[0][2] Address: 0x000108 Value: 2
arr2[0][3] Address: 0x000112 Value: 3

arr2[1][0] Address: 0x000116 Value: 4
arr2[1][1] Address: 0x000120 Value: 5

arr2[2][0] Address: 0x000124 Value: 6
arr2[2][1] Address: 0x000128 Value: 7
arr2[2][2] Address: 0x000132 Value: 8
Figure 4-20 depicts how memory is
 laid out for this array.
[image: Jagged array memory allocation]

Figure 4-20. Jagged array memory allocation

In these examples, we used array notation as opposed to pointer
 notation when accessing the array’s contents. This made it somewhat easier
 to see and understand. However, pointer notation would have worked as
 well.
Compound literals are useful in creating jagged arrays. However,
 accessing elements of a jagged array can be awkward, as demonstrated with
 the previous three for loops. This example can be simplified if a separate
 array is used to maintain the size of each column. While you can create
 jagged arrays in C, it may not be worth the effort.

Summary

We started with a quick review of arrays and then examined the
 similarities and differences between array and pointer notation. Arrays
 can be created using malloc type
 functions. These type of functions provide more flexibility than afforded
 by traditional array declaration. We saw how we can use the realloc function to change the amount of memory
 allocated for an array.
Dynamically allocating memory for an array can present challenges.
 In the case with two or more dimensional arrays, we have to be careful to
 make sure the array is allocated in contiguous memory.
We also explored the problems that can occur when passing and
 returning arrays. Passing the array’s size to a function is normally
 required so the function can properly handle the array. We also examined
 how to create jagged arrays in C.

Chapter 5. Pointers and Strings

Strings can be allocated to different regions of memory and pointers
 are commonly used to support string operations. Pointers support the dynamic
 allocation of strings and passing strings to a function. A good
 understanding of pointers and their use with strings enables programmers to
 develop valid and efficient applications.
Strings are a common component of many applications and are a complex
 topic. In this chapter, we will explore the various ways of declaring and
 initializing strings. We will examine the use of literal pools in C
 applications and their impact. In addition, we will look at common string
 operations, such as comparing, copying, and concatenating strings.
Strings are regularly passed and returned to functions as pointers to
 char. When we pass a string, we can do so either as a
 pointer to a char or a pointer to a constant
 char. The latter approach protects the string from
 modification within the function. Many examples used in this chapter provide
 additional illustrations of the concepts developed in the function chapter.
 They differ as they do not need to pass their size to a function.
A string may also be returned from a function to fulfill a request.
 This string may be passed to the function to be modified or allocated from
 within the function. We could also return a statically allocated string.
 Each of these approaches will be examined.
We will also examine the use of function pointers and how they can
 assist sorting operations. Understanding how pointers work in these
 situations is the primary focus of this chapter.
String Fundamentals

A string is a sequence of characters terminated with the ASCII
 NUL character. The ASCII character
 NUL is represented as
 \0. Strings are commonly stored in arrays or in memory
 allocated from the heap. However, not all arrays of characters are
 strings. An array of char may not
 contain the NUL character. Arrays of
 char have been used to represent smaller integer units,
 such as boolean, to conserve memory space in an application.
There are two types of strings in C:
	Byte string
	Consists of a sequence of char data type

	Wide string
	Consists of a sequence of wchar_t data type

The wchar_t data type is used for
 wide characters and may be either 16 or 32 bits in width. Both of these
 strings are terminated by the NUL
 character. Byte string functions are found in the string.h file. Wide string functions are found
 in the wchar.h file. Unless otherwise
 noted, we will be using byte strings in this chapter. Wide chars were
 created to support non-Latin character sets and are useful in applications
 that support foreign languages.
The length of a string is the number of characters in the
 string. This does not include the NUL
 character. When memory is allocated for a string, remember to allocate
 enough memory for all of the characters plus the NUL character.
Warning
Remember that NULL and NUL are different. NULL is used as a special pointer and is
 typically defined as ((void*)0).
 NUL is a char and is defined as '\0'. They should not be used
 interchangeably.

Character constants are character sequences enclosed in single quotes.
 Normally, they consist of a single character but can contain more than one
 character, as found with escape sequences. In C, they are of type int. This is demonstrated as follows:
 printf("%d\n",sizeof(char));
 printf("%d\n",sizeof('a'));
When executed, the size of char
 will be 1 while the character literal’s size will be 4. This anomaly is an
 artifact of the language design.
String Declaration

String declarations are supported in one of three ways: either
 as a literal, as an array of characters, or using a pointer to a
 character. The string literal is a sequence of characters enclosed in
 double quotes. String literals are frequently used for initialization
 purposes. They are located in a string literal pool discussed in the
 next section.
String literals are not to be confused with characters enclosed in
 single quotes—these are character literals. As we will see in later
 sections, when used in place of string literals, character literals can
 cause problems.
An array of characters is illustrated below where we declare
 a header array whose size may hold up to 31 characters. Since a string
 requires the NUL termination
 character, an array declared to have 32 characters can only use 31
 elements for the actual string’s text. The string’s location depends on
 where the declaration is placed. We will explore this issue in the
 section String Initialization.
 char header[32];
A pointer to a character is illustrated below. Since it has
 not been initialized, it does not reference a string. The string’s
 length and location are not specified at this time.
 char *header;

The String Literal Pool

When literals are defined they are frequently assigned to a
 literal pool. This area of memory holds the character sequences making
 up a string. When a literal is used more than once, there is normally
 only a single copy of the string in the string literal pool. This will
 reduce the amount of space needed for the application. Since a literal
 is normally considered to be immutable, it does not hurt to have a
 single copy of it. However, it is not a good practice to assume there
 will only be a single copy or that literals are immutable. Most
 compilers provide an option to turn off string pooling. When this
 happens, literals may be duplicated, each having their own
 address.
Note
GCC uses a -fwritable-strings option to turn off string
 pooling. In Microsoft Visual Studio, the
 /GF option will turn on string pooling.

Figure 5-1 illustrates how memory
 may be allocated for a literal pool.
[image: String literal pool]

Figure 5-1. String literal pool

String literals are frequently allocated to read-only memory. This
 makes them immutable. It doesn’t matter where a string literal is used
 or whether it is global, static, or local. In this sense, string
 literals do not have scope.
When a string literal is not a constant

In most compilers, a string literal is treated as a
 constant. It is not possible to modify the string. However, in some
 compilers, such as GCC, modification of the string literal is
 possible. Consider the following example:
 char *tabHeader = "Sound";
 *tabHeader = 'L';
 printf("%s\n",tabHeader); // Displays "Lound"
This will modify the literal to “Lound.” Normally, this is
 not desirable and should be avoided. Making the variable a constant as
 follows will provide a partial solution to this problem. Any attempt
 to modify the string will result in a compile-time error.
 const char *tabHeader = "Sound";

String Initialization

When we initialize a string, the approach we use depends on
 whether the variable is declared as an array of characters or as a
 pointer to a character. The memory used for a string will be either an
 array or a memory pointed to by a pointer. When a string is initialized,
 we can use a string literal or a series of characters, or obtain the
 characters from a different source such as standard input. We will
 examine these approaches.
Initializing an array of char

An array of char can be initialized
 using the initialization operator. In the following example, a header
 array is initialized to the character contained in a string
 literal:
 char header[] = "Media Player";
Since the literal “Media Player” is 12 characters in length, 13
 bytes are required to represent the literal. The array is allocated 13
 bytes to hold the string. The initialization will copy these
 characters to the array terminated by the NUL character, as illustrated in Figure 5-2, assuming the declaration
 is located in the main
 function.
An array can also be initialized using strcpy function, which is discussed in
 detail in the section Copying Strings. In the
 following sequence, the string literal is copied to the array.
 char header[13];
 strcpy(header,"Media Player");
[image: Initializing an array of char]

Figure 5-2. Initializing an array of char

A more tedious technique assigns individual characters as
 follows:
 header[0] = 'M';
 header[1] = 'e';
 ...
 header[12] = '\0';
Warning
The following assignment is invalid. We cannot assign the
 address of a string literal to an array name.
 char header2[];
 header2 = "Media Player";

Initializing a pointer to a char

Using dynamic memory allocation provides flexibility and
 potentially allows the memory to
 stay around longer. The following declaration will be used to
 illustrate this technique:
 char *header;
A common way to initialize this string is to use the
 malloc and strcpy functions to allocate and copy a
 literal to the string, as illustrated below:
 char *header = (char*) malloc(strlen("Media Player")+1);
 strcpy(header,"Media Player");
Assuming that the code is located in the main function, Figure 5-3 shows the state of the
 program stack.
[image: Initializing a pointer to a char]

Figure 5-3. Initializing a pointer to a char

In the previous use of the malloc function, we used the strlen function with a string literal
 argument. We could have declared its size explicitly as shown
 below:
 char *header = (char*) malloc(13);
Warning
When determining the length of a string to be used with the
 malloc function:
	Always remember to add one for the NUL terminator.

	Don’t use sizeof
 operator. Instead, use the strlen function to determine the
 length of an existing string. The sizeof operator will return the size
 of an array or pointer, not the length of the string.

Instead of using a string literal and strcpy function to initialize the string, we
 can use the following:
 *(header + 0) = 'M';
 *(header + 1) = 'e';
 ...
 *(header + 12) = '\0';
The address of a string literal can be assigned directly to a
 character pointer as shown below. However, this does not create a new
 copy of the string as illustrated in Figure 5-4:
 char *header = "Media Player";
[image: Copying a string literal’s address to a pointer]

Figure 5-4. Copying a string literal’s address to a pointer

Warning
Attempting to initialize a pointer to a char with a character
 literal will not work. Since a character literal is of type
 int, we would be trying to assign an integer to a
 character pointer. This will frequently cause the application to terminate
 when the pointer is dereferenced:
 char* prefix = '+'; // Illegal
A valid approach using the malloc function follows:
 prefix = (char*)malloc(2);
 *prefix = '+';
 *(prefix+1) = 0;

Initializing a string from standard input

A string can also be initialized from some external source
 such as standard input. However, potential initialization errors can
 occur when reading in a string from standard input, as shown below.
 The problem exists because we have not assigned memory to the command variable before attempting to use
 it:
 char *command;
 printf("Enter a Command: ");
 scanf("%s",command);
To address this problem, we should first allocate memory for the
 pointer or use a fixed size array instead of a pointer. However, the
 user may enter more data than can be held by these approaches. A more
 robust approach is illustrated in Chapter 4.

Summary of string placement

Strings can be allocated in several potential locations.
 The following example illustrates possible variations with Figure 5-5 illustrates how these
 strings are laid out in memory:
char* globalHeader = "Chapter";
char globalArrayHeader[] = "Chapter";

void displayHeader() {
 static char* staticHeader = "Chapter";
 char* localHeader = "Chapter";
 static char staticArrayHeader[] = "Chapter";
 char localArrayHeader[] = "Chapter";
 char* heapHeader = (char*)malloc(strlen("Chapter")+1);
 strcpy(heapHeader,"Chapter");
}
Knowing where a string is located is useful when attempting to
 understand how a program works and when using pointers to access the
 strings. A string’s location determines how long it will persist and
 which parts of an application can access it. For example, strings
 allocated to global memory will always be available and are accessible
 by multiple functions. Static strings will always be available but are
 accessible only to their defining function. Strings allocated to the
 heap will persist until they are released and may be used in multiple
 functions. Understanding these issues allows you to make informed
 decisions.
[image: String allocation in memory]

Figure 5-5. String allocation in memory

Standard String Operations

In this section, we will examine the use of pointers in common
 string operations. This includes comparing, copying, and concatenating
 strings.
Comparing Strings

String comparisons can be an integral part of an application. We
 will examine the details of how string comparisons are made, as
 incorrect comparisons can result in misleading or invalid results.
 Understanding how comparisons are made will help you avoid incorrect
 operations. This understanding will transfer to similar
 situations.
The standard way to compare strings is to use the strcmp function. Its prototype follows:
int strcmp(const char *s1, const char *s2);
Both of the strings being compared are passed as pointers to
 constant chars. This allows us to use the function
 without fear of it modifying the strings passed. This function returns
 one of three values:
	Negative
	If s1 precedes s2 lexicographically
 (alphabetically)

	Zero
	If the two strings are equal

	Positive
	If s1 follows s2 lexicographically

The positive and negative return values are useful for sorting
 strings in alphabetical order. The use of this function to test equality
 is illustrated below. The user’s entry will be stored in command. This is then compared to the literal
 string:
 char command[16];

 printf("Enter a Command: ");
 scanf("%s", command);
 if (strcmp(command, "Quit") == 0) {
 printf("The command was Quit");
 } else {
 printf("The command was not Quit");
 }
Memory for this example is allocated as shown in Figure 5-6.
[image: strcmp example]

Figure 5-6. strcmp example

There are a couple of incorrect ways to compare two strings. The
 first approach shown below attempts to use the assignment operator to
 perform the comparison:
 char command[16];

 printf("Enter a Command: ");
 scanf("%s",command);
 if(command = "Quit") {
 ...
First, it does not perform a comparison, and second, this will
 result in a syntax error message complaining about incompatible types.
 We cannot assign the address of a string literal to the array name. In
 this example, we tried to assign the string literal’s address, 600, to
 command. Since command is an array, it is not possible to
 assign a value to this variable without using array subscripts.
The second approach is to use the equality operator:
 char command[16];

 printf("Enter a Command: ");
 scanf("%s",command);
 if(command == "Quit") {
 ...
This should evaluate false since we are comparing the address of
 command, 300, with the string
 literal’s address, 600. The equality operator compares the addresses,
 not what is stored at the addresses. Using an array name or a string
 literal by themselves will return their addresses.

Copying Strings

Copying strings is a common operation and is normally accomplished
 using the strcpy function whose
 prototype follows:
char* strcpy(char *s1, const char *s2);
In this section, we will cover the basic copying process and
 identify common pitfalls. We will assume there is a need to copy an
 existing string to a new dynamically allocated buffer, though we could
 also have used an array of characters.
A common application is to read in a series of strings and store
 each of them in an array using a
 minimum amount of memory. This can be accomplished by creating an
 array sized to handle the largest
 string that the user might enter and then reading it into this array. On
 the basis of the string read in, we can then allocate just the right
 amount of memory. The basic approach is to:
	Read in the string using a large array of
 char

	Use malloc to allocate just
 the right amount of memory

	Use strcpy to copy the
 string into the dynamically allocated memory

The following sequence illustrates this technique. The names array will hold pointers to each name
 read in. The count variable specifies
 the next available array element. The name array is used to hold a string that is
 read in and is reused for each name read. The malloc function allocates the memory needed
 for each string and is assigned to the next available element of
 names. The name is then copied into
 the allocated memory:
 char name[32];
 char *names[30];
 size_t count = 0;

 printf("Enter a name: ");
 scanf("%s",name);
 names[count] = (char*)malloc(strlen(name)+1);
 strcpy(names[count],name);
 count++;
We can repeat the operation within a loop, incrementing count with
 each iteration. Figure 5-7 illustrates how
 memory is laid out for this process after reading in a single name:
 “Sam.”
[image: Copying a string]

Figure 5-7. Copying a string

Two pointers can reference the same string. When two pointers
 reference the same location, this is called
 aliasing. This topic is covered in Chapter 8. While this is not necessarily a
 problem, realize that the assignment of one pointer to another does not
 result in the string being copied. Instead, we simply copied the
 string’s address.
To illustrate this, an array of pointers to page headers is
 declared below. The page with index
 12 is assigned the address of a string literal. Next, the
 pointer in pageHeaders[12] is copied to pageHeaders[13]. Both of these pointers now
 reference the same string literal. The pointer is copied, not the
 string:
 char *pageHeaders[300];

 pageHeaders[12] = "Amorphous Compounds";
 pageHeaders[13] = pageHeaders[12];
These assignments are illustrated in Figure 5-8.
[image: Effects of copying pointers]

Figure 5-8. Effects of copying pointers

Concatenating Strings

String concatenation involves the merging of two strings. The
 strcat function is frequently used
 for this operation. This function takes pointers to the two strings to
 be concatenated and returns a pointer to the concatenated results. The
 prototype for the function follows:
char *strcat(char *s1, const char *s2);
The function concatenates the second string to the end of the
 first string. The second string is passed as a pointer to a constant
 char. The function does not allocate memory. This
 means the first string must be large enough to hold the concatenated
 results or it may write past the end of the string, resulting in
 unpredictable behavior. The return value of the function is the same
 address as its first argument. This can be convenient in some situations
 such as when the function is used as an argument of the printf function.
To illustrate the use of this function, we will combine two error
 message strings. The first one is a prefix and the second one is a
 specific error message. As shown below, we first need to allocate enough
 memory for both strings in a buffer, then copy the first string to the
 buffer, and finally concatenate the second string with the
 buffer:
 char* error = "ERROR: ";
 char* errorMessage = "Not enough memory";

 char* buffer = (char*)malloc(strlen(error)+strlen(errorMessage)+1);
 strcpy(buffer,error);
 strcat(buffer, errorMessage);

 printf("%s\n", buffer);
 printf("%s\n", error);
 printf("%s\n", errorMessage);
We added one to the malloc
 function’s argument to accommodate the NUL character. If we assume the first literal
 immediately precedes the second literal in memory, the output of this
 sequence will be as follows. Figure 5-9 illustrates how memory is
 allocated:
ERROR: Not enough memory
ERROR:
Not enough memory
[image: Correct copy operation]

Figure 5-9. Correct copy operation

If we had not allocated a separate memory location for the
 concatenated string, we would overwrite the first string. This is
 illustrated in the following example, where a buffer is not used. We
 also assume the first literal immediately precedes the second literal in
 memory:
 char* error = "ERROR: ";
 char* errorMessage = "Not enough memory";

 strcat(error, errorMessage);
 printf("%s\n", error);
 printf("%s\n", errorMessage);
The output of this sequence follows:
ERROR: Not enough memory
ot enough memory
The errorMessage string has
 been shifted one character to the left. This is because the resulting
 concatenated string is written over errorMessage. Since the literal “Not enough
 memory” follows the first literal, the second literal is overwritten.
 This is illustrated in Figure 5-10, where the literal pool’s
 state is displayed before and after the copy operation.
[image: Improper string copy operation]

Figure 5-10. Improper string copy operation

We could have used a char array instead of a
 pointer for the messages, as shown below. However, this will not always
 work:
 char error[] = "ERROR: ";
 char errorMessage[] = "Not enough memory";
If we used the following strcpy
 call, we would get a syntax error. This is because we are attempting to
 assign the pointer returned by the function to the name of an array.
 This type of operation is illegal:
 error = strcat(error, errorMessage);
If we remove the assignment, as follows, we would likely get a
 memory access violation, since the copy operation is overwriting a part
 of the stack frame. This assumes the array declarations are in a
 function, as illustrated in Figure 5-11. Whether the source strings
 are stored in the string literal pool or on the stack frame, they should
 not be used to directly hold the concatenated result. Always allocate
 dedicated memory for the concatenation:
 strcat(error, errorMessage);
[image: Overwriting the stack frame]

Figure 5-11. Overwriting the stack frame

Another simple mistake made when concatenating strings is using a
 character literal instead of a string literal. In the following example,
 we concatenate a string to a path string. This will work as
 expected:
 char* path = "C:";
 char* currentPath = (char*) malloc(strlen(path)+2);
 currentPath = strcat(currentPath,"\\");
We add two to the string length in the malloc call because we need space for the
 extra character and the NUL
 character. We are concatenating a single character, the backslash, since
 we used an escape sequence in the string literal.
However, if we used a character literal instead, as shown below,
 we will get a runtime error when the second argument is mistakenly
 interpreted as the address of a char:
 currentPath = strcat(path,'\\');

Passing Strings

Passing a string is simple enough. In the function call, use an
 expression that evaluates to the address of a char. In
 the parameter list, declare the parameter as a pointer to a
 char. The interesting issues occur when using the
 string within the function. We will first examine how to pass a simple
 string in the first two subsections and then how to pass a string
 requiring initialization in the third section. Passing strings as
 arguments to an application is covered in the section Passing Arguments to an Application.
Passing a Simple String

There are several ways of passing the address of a string to a
 function, depending on how the string is declared. In this section, we
 will demonstrate these techniques using a function that mimics the
 strlen function as implemented below.
 We used parentheses to force the post increment operator to execute
 first, incrementing the pointer. Otherwise, the character referenced by
 string would have been incremented,
 which is not what is desired:
size_t stringLength(char* string) {
 size_t length = 0;
 while(*(string++)) {
 length++;
 }
 return length;
}
Note
The string should actually be passed as a pointer to a constant
 char, as discussed in the section
 Passing a Pointer to a Constant char.

Let’s start with the following declarations:
 char simpleArray[] = "simple string";
 char *simplePtr = (char*)malloc(strlen("simple string")+1);
 strcpy(simplePtr, "simple string");
To invoke the function with the pointer, we simply use the
 pointer’s name:
 printf("%d\n",stringLength(simplePtr));
To invoke the function using the array, we have three
 choices, as shown below. In the first statement, we use the array’s
 name. This will return its address. In the second statement, the
 address-of operator is used explicitly. This is redundant and
 unnecessary. In addition, it will often generate a warning. In the third
 statement, we used the address-of operator with the array’s first
 element. While this works, it is somewhat verbose:
 printf("%d\n",stringLength(simpleArray));
 printf("%d\n",stringLength(&simpleArray));
 printf("%d\n",stringLength(&simpleArray[0]));
Figure 5-12 illustrates how memory
 will be allocated for the stringLength function.
[image: Passing a string]

Figure 5-12. Passing a string

Now let’s turn our attention to how we declare the formal
 parameter. In the previous implementation of stringLength, we declared the parameter as a
 pointer to a char. We could have also used array
 notation as shown below:
size_t stringLength(char string[]) { ... }
The function’s body will stay the same. This change will have no
 effect on how the function is invoked or its behavior.

Passing a Pointer to a Constant char

Passing a pointer to a string as a constant
 char is a very common and useful technique. It passes
 the string using a pointer, and at the same time prevents the string
 being passed from being modified. A better implementation of the
 stringLength function developed in
 the section Passing Strings incorporates this
 declaration as follows:
size_t stringLength(const char* string) {
 size_t length = 0;
 while(*(string++)) {
 length++;
 }
 return length;
}
If we attempt to modify the original string as follows, then a
 compile-time error message will be generated:
size_t stringLength(const char* string) {
 ...
 *string = 'A';
 ...
}

Passing a String to Be Initialized

There are situations where we want a function to return a
 string initialized by the function. For example, we may want to pass
 information about a part, such as its name and quantity, and then have a
 formatted string representing this information returned. By keeping the
 formatting process in a function we can reuse it in different sections
 of our program.
However, we need to decide whether we want to pass the function an
 empty buffer to be filled and returned by the function, or whether the
 buffer should be dynamically allocated by the function and then returned
 to us.
When a buffer is passed:
	The buffer’s address and its size must be passed

	The caller is responsible for deallocating the buffer

	The function normally returns a pointer to this buffer

This approach keeps the buffer’s allocation and deallocation
 responsibility with the caller. Returning a pointer to the buffer is
 common, even if it is unnecessary, as typified by strcpy and similar functions. The following
 format function illustrates this
 approach:
char* format(char *buffer, size_t size,
 const char* name, size_t quantity, size_t weight) {
 snprintf(buffer, size, "Item: %s Quantity: %u Weight: %u",
 name, quantity, weight);
 return buffer;
}
The snprintf function was used
 as a simple way of formatting the string. This function writes to the
 buffer provided by the first parameter. The second argument specifies
 the buffer’s size. This function will not write past the end of the
 buffer. Otherwise, the function behaves the same way as printf.
The following demonstrates the use of the function:
printf("%s\n",format(buffer,sizeof(buffer),"Axle",25,45));
The output of this sequence is as follows:
Item: Axle Quantity: 25 Weight: 45
By returning a pointer to buffer, we are able to use the function as a
 parameter of the printf
 function.
An alternative to this approach is to pass NULL as the buffer’s
 address. This implies the caller does not want to provide the buffer or
 is unsure how large the buffer should be. This version of the function
 can be implemented as follows. When length is calculated the
 subexpression 10 + 10 represents the
 largest width anticipated for the quantity and weight. The one allows
 space for the NUL termination
 character:
char* format(char *buffer, size_t size,
 const char* name, size_t quantity, size_t weight) {

 char *formatString = "Item: %s Quantity: %u Weight: %u";
 size_t formatStringLength = strlen(formatString)-6;
 size_t nameLength = strlen(name);
 size_t length = formatStringLength + nameLength +
 10 + 10 + 1;

 if(buffer == NULL) {
 buffer = (char*)malloc(length);
 size = length;
 }
 snprintf(buffer, size, formatString, name, quantity, weight);
 return buffer;
}
The function variation to use depends on the needs of the
 application. The chief drawback of the second approach is that the
 caller is now responsible for freeing the memory allocated. The caller
 needs to be fully aware of how this function should be used; otherwise,
 a memory leak can easily occur.

Passing Arguments to an Application

The main function is
 normally the first function in an application to be executed. With
 console-based programs it is common to pass information to the program
 to enable or otherwise control the application’s behavior. These
 parameters may be used to specify which files to process or to configure
 the application’s output. For example, the ls Linux command will list the files in the
 current directory based on parameters used with the command.
C supports command line arguments using the traditionally named
 argc and argv parameters. The first parameter, argc, is an integer that indicates how many
 parameters are passed. At least one parameter is always passed. This
 parameter is the name of the executable. The second
 parameter, argv, is normally viewed
 as a one-dimensional array of string pointers. Each pointer references a
 command line argument.
The following main function
 will simply list its arguments one per line. In this version, argv is declared as a pointer to a pointer to
 a char:
int main(int argc, char** argv) {
 for(int i=0; i<argc; i++) {
 printf("argv[%d] %s\n",i,argv[i]);
 }
 ...
}
The program is executed with the following command line:
process.exe -f names.txt limit=12 -verbose
The output will be as follows:
argv[0] c:/process.exe
argv[1] -f
argv[2] names.txt
argv[3] limit=12
argv[4] -verbose
Each command line parameter is delineated by whitespace. The
 memory allocated for the program is illustrated in Figure 5-13.
[image: Using argc/argv]

Figure 5-13. Using argc/argv

The declaration of argv can be
 simplified as follows:
int main(int argc, char* argv[]) {
This is equivalent to char**
 argv. A more detailed explanation of this notation is found
 in Multiple Levels of Indirection.

Returning Strings

When a function returns a string, it returns the address of the
 string. The main concern is to return a valid string address. To do this,
 we can return a reference to either:
	A literal

	Dynamically allocated memory

	A local string variable

Returning the Address of a Literal

An example of returning a literal is shown below. An integer code
 selects from one of four different processing centers. The function’s
 purpose is to return the processing center’s name as a string. In this
 example, it simply returns the literal’s address:
char* returnALiteral(int code) {
 switch(code) {
 case 100:
 return "Boston Processing Center";
 case 200:
 return "Denver Processing Center";
 case 300:
 return "Atlanta Processing Center";
 case 400:
 return "San Jose Processing Center";
 }
}
This will work fine. Just keep in mind that string literals are
 not always treated as constants, as discussed in the section When a string literal is not a constant. We can also
 declare static literals as in the following example. A subCode field has been added and selects
 between different centers. The advantage of this approach is not having
 to use the same literal in more than one place and possibly introducing
 errors by mistyping the literal:
char* returnAStaticLiteral(int code, int subCode) {
 static char* bpCenter = "Boston Processing Center";
 static char* dpCenter = "Denver Processing Center";
 static char* apCenter = "Atlanta Processing Center";
 static char* sjpCenter = "San Jose Processing Center";

 switch(code) {
 case 100:
 return bpCenter;
 case 135:
 if(subCode <35) {
 return dpCenter;
 } else {
 return bpCenter;
 }
 case 200:
 return dpCenter;
 case 300:
 return apCenter;
 case 400:
 return sjpCenter;
 }
}
Returning a pointer to a static string used for multiple purposes
 can be a problem. Consider the following variation of the format function developed in the section Passing a String to Be Initialized. Information about a
 part is passed to the function and a formatted string representing the
 string is returned:
char* staticFormat(const char* name, size_t quantity, size_t weight) {
 static char buffer[64]; // Assume to be large enough
 sprintf(buffer, "Item: %s Quantity: %u Weight: %u",
 name, quantity, weight);
 return buffer;
}
The buffer is allocated 64 bytes, which may or may not be enough.
 For purposes of this example, we will ignore this potential problem. The
 main problem with this approach is illustrated with the following
 sequence:
 char* part1 = staticFormat("Axle",25,45);
 char* part2 = staticFormat("Piston",55,5);
 printf("%s\n",part1);
 printf("%s\n",part2);
When executed, we get the following output:
Item: Piston Quantity: 55 Weight: 5
Item: Piston Quantity: 55 Weight: 5
Since the staticFormat method
 used the same static buffer for both calls, the last call overwrote the
 first call’s results.

Returning the Address of Dynamically Allocated Memory

If a string needs to be returned from a function, the memory for
 the string can be allocated from the heap and then its address can be
 returned. We will demonstrate this technique by developing a blanks function. This function returns a
 string containing a series of blanks representing a “tab,” as shown
 below. The function is passed an integer specifying the tab sequence’s
 length:
char* blanks(int number) {
 char* spaces = (char*) malloc(number + 1);
 int i;
 for (i = 0; i<number; i++) {
 spaces[i] = ' ';
 }
 spaces[number] = '\0';
 return spaces;
}

 ...
 char *tmp = blanks(5);
The NUL termination character
 is assigned to the last element of the array indexed by number. Figure 5-14 illustrates the
 allocation of memory for this example. It shows the application’s state
 just before and after the blanks
 function returns.
[image: Returning dynamically allocated string]

Figure 5-14. Returning dynamically allocated string

It is the function’s caller’s responsibility to deallocate the
 memory returned. Failure to deallocate it when it is no longer needed
 will result in a memory leak. The following is an example of when a
 memory leak can occur. The string is used within the printf function and its address is
 subsequently lost because it was not saved:
 printf("[%s]\n",blanks(5));
A safer approach is demonstrated below:
 char *tmp = blanks(5);
 printf("[%s]\n",tmp);
 free(tmp);
Returning the address of a local string

Returning the address of a local string will be a problem since
 the memory will be corrupted when it is overwritten by another stack
 frame. This approach should be avoided; it is explained here to
 demonstrate the potential problems with the course of action.
We rewrite the blanks function from the previous section as
 shown below. Instead of dynamically allocating memory, an array is
 declared within the function and will subsequently be located in a
 stack frame. The function returns the array’s address:
#define MAX_TAB_LENGTH 32

char* blanks(int number) {
 char spaces[MAX_TAB_LENGTH];
 int i;
 for (i = 0; i < number && i < MAX_TAB_LENGTH; i++) {
 spaces[i] = ' ';
 }
 spaces[i] = '\0';
 return spaces;
}
When the function executes it will return the string’s address,
 but that memory area will subsequently be overwritten by the next
 function called. When this pointer is dereferenced, the contents of
 this memory location may have been changed. The program stack’s state
 is illustrated in Figure 5-15.
[image: Returning the address of a local string]

Figure 5-15. Returning the address of a local string

Function Pointers and Strings

Function pointers are discussed in depth in Function Pointers. They can be a flexible means of
 controlling how a program executes. In this section, we will demonstrate
 this capability by passing a comparison function to a sort function.
 Within a sort function, comparison of the array’s elements are made to
 determine whether the array’s elements need to be swapped. The comparison
 determines whether the array is sorted in ascending or descending order,
 or by some other sorting criteria. By passing a function to control the
 comparison, the function is more flexible. By passing different comparison
 functions, we can have the same sort function perform in different
 ways.
The comparison functions we will use determine the sorting order
 based on the case of the array’s elements. The following two functions,
 compare and compareIgnoreCase, compare two strings based on
 the case of the strings. The compareIgnoreCase function converts the strings
 to lower case before it uses the strcmp
 function to compare the strings. The strcmp function was discussed in the section
 Comparing Strings. The stringToLower function returns a pointer to
 dynamically allocated memory. This means we need to free it when we no
 longer need it:
int compare(const char* s1, const char* s2) {
 return strcmp(s1,s2);
}

int compareIgnoreCase(const char* s1, const char* s2) {
 char* t1 = stringToLower(s1);
 char* t2 = stringToLower(s2);
 int result = strcmp(t1, t2);
 free(t1);
 free(t2);
 return result;
}
The stringToLower function is
 shown below. It returns a lowercase equivalent of the string passed to
 it:
char* stringToLower(const char* string) {
 char *tmp = (char*) malloc(strlen(string) + 1);
 char *start = tmp;
 while (*string != 0) {
 *tmp++ = tolower(*string++);
 }
 *tmp = 0;
 return start;
}
The function pointer to be used is declared using a type definition
 as shown below:
typedef int (fptrOperation)(const char*, const char*);
The following sort function’s
 implementation is based on the bubble sort algorithm. It is passed the
 array’s address, its size, and a pointer to the function controlling the
 sort. In the if statement, the function passed is
 invoked with two elements of the array. It determines whether the array’s
 two elements will be swapped.
void sort(char *array[], int size, fptrOperation operation) {
 int swap = 1;
 while(swap) {
 swap = 0;
 for(int i=0; i<size-1; i++) {
 if(operation(array[i],array[i+1]) > 0){
 swap = 1;
 char *tmp = array[i];
 array[i] = array[i+1];
 array[i+1] = tmp;
 }
 }
 }
}
A display function will show the array’s contents:
void displayNames(char* names[], int size) {
 for(int i=0; i<size; i++) {
 printf("%s ",names[i]);
 }
 printf("\n");
}
We can invoke the sort function
 using either of the two comparison functions. The following uses the
 compare function to perform a
 case-sensitive sort:
 char* names[] = {"Bob", "Ted", "Carol", "Alice", "alice"};
 sort(names,5,compare);
 displayNames(names,5);
The output of this sequence follows:
Alice Bob Carol Ted alice
If we had used the compareIgnoreCase function instead, then our
 output would appear as shown below:
Alice alice Bob Carol Ted
This makes the sort function much
 more flexible. We can now devise and pass as simple or complex an
 operation as we want to control the sort without having to write different
 sort functions for different sorting
 needs.

Summary

In this chapter, we focused on string operations and the use of
 pointers. The structure of strings and where they are located in memory
 impacts their use. Pointers provide a flexible tool for working with
 strings but also offer numerous opportunities to misuse strings.
String literals and the use of a literal pool were covered.
 Understanding literals helps explain why certain string assignment
 operations do not always behave as expected. This is closely related to
 string initialization, which was addressed in detail. Several standard
 string operations were examined and potential problems were
 identified.
Passing and returning strings to functions are common operations.
 The issues and potential problems with these type of operations were
 detailed, including the problems potentially occurring when returning a
 local string. The use of a pointer to a constant character was also
 discussed.
Finally, function pointers were used to demonstrate a powerful
 approach for writing sort functions. The approach is not limited to the
 sort operation but can be applied to other areas.

Chapter 6. Pointers and Structures

Structures in C can represent data structure elements, such as the nodes
 of a linked list or tree. Pointers provide the glue that ties these elements
 together. Understanding the versatility supported by pointers for common
 data structures will facilitate your ability to create your own data
 structures. In this chapter, we will explore the fundamentals of structure
 memory allocation in C and the implementation of several common data
 structures.
Structures enhance the utility of collections such as arrays. To
 create an array of entities such as a color type with multiple fields
 without using a structure, it is necessary to declare an array for each
 field and keep each value for a field in the same index of each array.
 However, with a structure, we can declare a single array where each element
 is an instance of the structure.
This chapter expands on the pointer concepts learned so far. This
 includes the introduction of pointer notation as used with structures, a
 discussion of how memory is allocated for a structure, a technique for
 managing memory used by structures, and uses of function pointers.
We will start with a discussion of how memory is allocated for a
 structure. An understanding of this allocation will explain how various
 operations work. This is followed by the introduction of a technique to
 minimize the overhead of heap management.
The last section illustrates how to create a number of data structures
 using pointers. The linked list is discussed first and will serve as the
 basis for several other data structures. The tree data structure is
 discussed last and does not use a linked list.
Introduction

A structure in C can be declared in a number of ways. In this
 section we will only examine two approaches, as our focus is on their use
 with pointers. In the first approach,
 we declare a structure using the struct
 keyword. In the second approach, we use a type definition. In the
 following declaration, the structure’s name is prefixed with an
 underscore. This is not necessary but is often used as a naming
 convention. The _person structure
 includes fields for name, title, and age:
struct _person {
 char* firstName;
 char* lastName;
 char* title;
 unsigned int age;
};
A structure’s declaration frequently uses the typedef keyword to simplify its use later in a
 program. The following illustrates its use with the _person structure:
typedef struct _person {
 char* firstName;
 char* lastName;
 char* title;
 unsigned int age;
} Person;
An instance of a person is declared as follows:
 Person person;
Alternately, we can declare a pointer to a Person and allocate memory for it, as shown
 below:
 Person *ptrPerson;
 ptrPerson = (Person*) malloc(sizeof(Person));
If we use a simple declaration of a structure as we did with
 person, we use the dot notation to
 access its fields. In the following example, we assign values to the
 firstName and age fields:
 Person person;
 person.firstName = (char*)malloc(strlen("Emily")+1);
 strcpy(person.firstName,"Emily");
 person.age = 23;
However, if we are using a pointer to a structure, we need to use the
 points-to operator, as follows. This operator consists of a dash followed
 by the greater than symbol:
 Person *ptrPerson;
 ptrPerson = (Person*)malloc(sizeof(Person));
 ptrPerson->firstName = (char*)malloc(strlen("Emily")+1);
 strcpy(ptrPerson->firstName,"Emily");
 ptrPerson->age = 23;
We do not have to use the points-to operator. Instead, we can
 dereference the pointer first and then apply the dot operator. This is
 illustrated below, where we duplicate the previous assignments:
 Person *ptrPerson;
 ptrPerson = (Person*)malloc(sizeof(Person));
 (*ptrPerson).firstName = (char*)malloc(strlen("Emily")+1);
 strcpy((*ptrPerson).firstName,"Emily");
 (*ptrPerson).age = 23;
This approach is more awkward but you may see it used at times.
How Memory Is Allocated for a Structure

When a structure is allocated memory, the amount allocated to
 the structure is at minimum the sum of the size of its individual
 fields. However, the size is often larger than this sum because padding
 can occur between fields of a structure. This padding can result from
 the need to align certain data types on specific boundaries. For
 example, a short is typically aligned on an address evenly divisible by
 two while an integer is aligned on an address even divisible by
 four.
Several implications are related to this allocation of extra
 memory:
	Pointer arithmetic must be used with care

	Arrays of structures may have extra memory between their
 elements

For example, when an instance of the Person structure presented in the previous
 section is allocated memory, it will be allocated 16 bytes—4 bytes for
 each element. The following alternate version of Person uses a short instead of an unsigned
 integer for age. This will result in
 the same amount of memory being allocated. This is because two bytes are
 padded at the end of the structure:
typedef struct _alternatePerson {
 char* firstName;
 char* lastName;
 char* title;
 short age;
} AlternatePerson;
In the following sequence, we declare an instance of both a
 Person and an AlternatePerson structure. The structures’
 sizes are then displayed. Their size will be the same, 16 bytes:
 Person person;
 AlternatePerson otherPerson;

 printf("%d\n",sizeof(Person)); // Displays 16
 printf("%d\n",sizeof(AlternatePerson)); // Displays 16
If we create an array of AlternatePerson, as shown below, there will be
 padding between the array’s elements. This is illustrated in Figure 6-1. The shaded area shows the
 gaps between the array elements.
 AlternatePerson people[30];
[image: Array of AlternativePerson]

Figure 6-1. Array of AlternativePerson

If we had moved the age field
 between two fields of the structure, the gap would be internal to the
 structure. Depending on how the structure is accessed, this may be
 significant.

Structure Deallocation Issues

When memory is allocated for a structure, the runtime system will
 not automatically allocate memory for any pointers defined within it.
 Likewise, when the structure goes away, the runtime system will not
 automatically deallocate memory assigned to the structure’s
 pointers.
Consider the following structure:
typedef struct _person {
 char* firstName;
 char* lastName;
 char* title;
 uint age;
} Person;
When we declare a variable of this type or dynamically allocate
 memory for this type, the three pointers will contain garbage. In the next
 sequence, we declare a Person. Its
 memory allocation is shown in Figure 6-2. The three dots indicate
 uninitialized memory:
void processPerson() {
 Person person;
 ...
}
[image: Person structure uninitialized]

Figure 6-2. Person structure uninitialized

During the initialization of this structure, each field will be
 assigned a value. The pointer fields will be allocated from the heap and
 assigned to each pointer:
void initializePerson(Person *person, const char* fn,
 const char* ln, const char* title, uint age) {
 person->firstName = (char*) malloc(strlen(fn) + 1);
 strcpy(person->firstName, fn);
 person->lastName = (char*) malloc(strlen(ln) + 1);
 strcpy(person->lastName, ln);
 person->title = (char*) malloc(strlen(title) + 1);
 strcpy(person->title, title);
 person->age = age;
}
We can use this function as shown below. Figure 6-3 illustrates how memory is
 allocated:
void processPerson() {
 Person person;
 initializePerson(&person, "Peter", "Underwood", "Manager", 36);
 ...
}
int main() {
 processPerson();
 ...
}
[image: Person structure initialized]

Figure 6-3. Person structure initialized

Since this declaration was part of a function, when the function
 returns the memory for person will go
 away. However, the dynamically allocated strings were not released and are
 still in the heap. Unfortunately, we have lost their address and we cannot
 free them, resulting in a memory leak.
When we are through with the instance, we need to deallocate the
 memory. The following function will free up the memory we previously
 allocated when we created the instance:
void deallocatePerson(Person *person) {
 free(person->firstName);
 free(person->lastName);
 free(person->title);
}
This function needs to be invoked before the function
 terminates:
void processPerson() {
 Person person;
 initializePerson(&person, "Peter", "Underwood", "Manager", 36);
 ...
 deallocatePerson(&person);
}
Unfortunately, we must remember to call the
 initialize and deallocate functions.
 The automatic invocation of these operations against an object is
 performed in object-oriented programming languages such as C++.
If we use a pointer to a Person,
 we need to remember to free up the person as shown below:
void processPerson() {
 Person *ptrPerson;
 ptrPerson = (Person*) malloc(sizeof(Person));
 initializePerson(ptrPerson, "Peter", "Underwood", "Manager", 36);
 ...
 deallocatePerson(ptrPerson);
 free(ptrPerson);
}
Figure 6-4 illustrates how
 memory is allocated.
[image: Pointer to a person instance]

Figure 6-4. Pointer to a person instance

Avoiding malloc/free Overhead

When structures are allocated and then deallocated repeatedly,
 some overhead will be incurred, resulting in a potentially significant
 performance penalty. One approach to deal with this problem is to maintain
 your own list of allocated structures. When a user no longer needs an
 instance of a structure, it is returned to the pool. When an instance is
 needed, it obtains the object from the pool. If there are no elements
 available in the pool, a new instance is dynamically allocated. This
 approach effectively maintains a pool of structures that can be used and
 reused as needed.
To demonstrate this approach we will use the Person structure previously defined. A pool of
 persons is maintained in an array. A more complex list, such as a linked
 list, can also be used, as illustrated in the section Single-Linked List. To keep this example simple, an
 array of pointers is used, as declared below:
#define LIST_SIZE 10
Person *list[LIST_SIZE];
Before the list can be used, it needs to be initialized. The
 following function assigns NULL to each
 element of the array:
void initializeList() {
 for(int i=0; i<LIST_SIZE; i++) {
 list[i] = NULL;
 }
}
Two functions are used to add and retrieve persons. The first is the
 getPerson function, as shown below.
 This function retrieves a person from the list if possible. The array’s
 elements are compared to NULL. The
 first non-null element is returned, and its position in list is then assigned a value of NULL. If there is no person available, then a
 new instance of a Person is created and
 returned. This avoids the overhead of dynamically allocating memory for a
 person every time a new one is needed. We only allocate memory if there is
 none in the pool. The initialization of the instance returned can be done
 either before it is returned or by the caller, depending on the needs of
 the application:
Person *getPerson() {
 for(int i=0; i<LIST_SIZE; i++) {
 if(list[i] != NULL) {
 Person *ptr = list[i];
 list[i] = NULL;
 return ptr;
 }
 }
 Person *person = (Person*)malloc(sizeof(Person));
 return person;
}
The second function is the returnPerson, which either adds the person to
 the list or frees it up. The array’s elements are checked to see whether
 there are any NULL values. If it does,
 then person is added to that position
 and the pointer is returned. If the list is full, then the pointers within
 person are freed using the deallocatePerson function, person is freed, and then NULL is returned:
Person *returnPerson(Person *person) {
 for(int i=0; i<LIST_SIZE; i++) {
 if(list[i] == NULL) {
 list[i] = person;
 return person;
 }
 }
 deallocatePerson(person);
 free(person);
 return NULL;
}
The following illustrates the initialization of the list and adding
 a person to the list:
 initializeList();
 Person *ptrPerson;

 ptrPerson = getPerson();
 initializePerson(ptrPerson,"Ralph","Fitsgerald","Mr.",35);
 displayPerson(*ptrPerson);
 returnPerson(ptrPerson);
One problem associated with this approach deals with the list size.
 If the list is too small, then more dynamic allocation and deallocation of
 memory will be necessary. If the list is large and the structures are not
 being used, a potentially large amount of memory may be tied up and
 unavailable for other uses. A more sophisticated list management scheme
 can be used to manage the list’s size.

Using Pointers to Support Data Structures

Pointers can provide more flexible support for simple and complex
 data structures. The flexibility can be attributed to the dynamic
 allocation of memory and the ease of changing pointer references. The
 memory does not have to be contiguous, as is the case with arrays. Only
 the exact amount of memory needs to be allocated.
In this section, we will examine how several commonly used data
 structures can be implemented using pointers. Numerous C libraries provide
 equivalent and more extensive support than those illustrated here.
 However, understanding how they can be implemented can prove to be useful
 when implementing nonstandard data structures. On some platforms, the
 libraries may not be available, and the developer will need to implement
 their own version.
We will examine four different data structures:
	Linked list
	A single-linked list

	Queue
	A simple first-in first-out queue

	Stack
	A simple stack

	Tree
	A binary tree

Along with these data structures, we will incorporate function
 pointers to illustrate their power in dealing with generic structures. The
 linked list is a very useful data structure, and we will use it as the
 foundation of the queue’s and stack’s implementation.
We will illustrate each of these data structures using an employee
 structure. For example, a linked list consists of nodes connected to one
 another. Each node will hold user-supplied data. The simple employee
 structure is listed below. The unsigned
 char data type is used for age, as this will be large enough to
 hold people’s ages:
typedef struct _employee{
 char name[32];
 unsigned char age;
} Employee;
A simple array is used for a single name. While a pointer to
 char may prove to be a more flexible
 data type for this field, we have elected to use an array of char to simplify the examples.
Two comparison functions will be developed. The first one compares
 two employees and returns an integer. This function is modeled after the
 strcmp function. A return value of 0
 means the two employee structures are considered to be equal to each
 other. A return value of –1 means the first employee precedes the second
 employee alphabetically. A return value of 1 means the first employee
 follows the second employee. The second function displays a single
 employee:
int compareEmployee(Employee *e1, Employee *e2) {
 return strcmp(e1->name, e2->name);
}

void displayEmployee(Employee* employee) {
 printf("%s\t%d\n", employee->name, employee->age);
}
In addition, two function pointers will be used as defined below.
 The DISPLAY function pointer designates
 a function that is passed void and returns void. Its intent is to display
 data. The second pointer, COMPARE,
 represents a function used to compare data referenced by two pointers. The
 function should compare the data and return either a 0, –1, or 1, as explained with the compareEmployee
 function:
typedef void(*DISPLAY)(void*);
typedef int(*COMPARE)(void*, void*);
Single-Linked List

A linked list is a data structure that consists of a series
 of nodes interconnected with links. Typically, one node is called the
 head node and subsequent nodes follow the head, one after another. The
 last node is called the tail. The links connecting
 the nodes are easily implemented using a pointer. Each node can be
 dynamically allocated as needed.
This approach is preferable to an array of nodes. Using an array
 results in the creation of a fixed number of nodes regardless of how
 many nodes may be needed. Links are implemented using the index of the
 array’s elements. Using an array is not as flexible as using dynamic
 memory allocation and pointers.
For example, if we wanted to change the order of elements of the
 array, it would be necessary to copy both elements, and that can be
 large for a structure. In addition, adding or removing an element may
 require moving large portions of the array to make room for the new
 element or to remove an existing element.
There are several types of linked lists. The simplest is a
 single-linked list where there is a single link from one node to the
 next. The links start at the head and eventually leads to the tail. A
 circular-linked list has no tail. The linked list’s last node points
 back to the head. A doubly linked list uses two links, one pointing
 forward and one pointing backward so that you can navigate through the
 list in both directions. This type of linked list is more flexible but
 is more difficult to implement. Figure 6-5
 conceptually illustrates these types of linked lists.
[image: Linked list types]

Figure 6-5. Linked list types

In this section, we will illustrate the construction and use of a
 single-linked list. The following shows the structure used to support
 the linked list. A Node structure is
 defined to represent a node. It consists of two pointers. The first one,
 a pointer to void, holds an arbitrary data type. The second is a pointer
 to the next node. The LinkedList
 structure represents the linked list and holds a pointer to the head and
 the tail. The current pointer will help traverse the linked list:
typedef struct _node {
 void *data;
 struct _node *next;
} Node;

typedef struct _linkedList {
 Node *head;
 Node *tail;
 Node *current;
} LinkedList;
We will develop several functions that use these structures to
 support linked list functionality:
	void initializeList(LinkedList*)	Initializes the linked list
	void addHead(LinkedList*, void*)	Adds data to the linked list’s head
	void addTail(LinkedList*, void*)	Adds data to the linked list’s tail
	void delete(LinkedList*, Node*)	Removes a node from the linked list
	Node *getNode(LinkedList*, COMPARE, void*)	Returns a pointer to the node containing a specific data
 item
	void displayLinkedList(LinkedList*, DISPLAY)	Displays the linked list

Before the linked list can be used it needs to be initialized. The
 initializeList function, shown below,
 performs this task. A pointer to the LinkedList object is passed to the function
 where each pointer in the structure is set to NULL:
void initializeList(LinkedList *list) {
 list->head = NULL;
 list->tail = NULL;
 list->current = NULL;
}
The addHead and addTail functions add data to the linked
 list’s head and tail, respectively. In this linked list implementation,
 the add and delete functions are
 responsible for allocating and freeing memory used by the linked list’s
 nodes. This removes this responsibility from the user of the linked
 list.
In the addHead function listed
 below, memory is first allocated for the node and the data passed to the
 function is assigned to the structure’s data field. By passing the data as a pointer
 to void, the linked list is able to hold any type of data the user wants
 to use.
Next, we check to see whether the linked list is empty. If so, we
 assign the tail pointer to the node and assign NULL to the node’s next
 field. If not, the node’s next
 pointer is assigned to the list’s head. Regardless, the list’s head is
 assigned to the node:
void addHead(LinkedList *list, void* data) {
 Node *node = (Node*) malloc(sizeof(Node));
 node->data = data;
 if (list->head == NULL) {
 list->tail = node;
 node->next = NULL;
 } else {
 node->next = list->head;
 }
 list->head = node;
}
The following code sequence illustrates using the initializeList and addHead functions. Three employees are added
 to the list. Figure 6-6 shows how memory is
 allocated after these statements execute. Some arrows have been removed
 to simplify the diagram. In addition, the Employee structure’s name array has been simplified:
 LinkedList linkedList;

 Employee *samuel = (Employee*) malloc(sizeof(Employee));
 strcpy(samuel->name, "Samuel");
 samuel->age = 32;

 Employee *sally = (Employee*) malloc(sizeof(Employee));
 strcpy(sally->name, "Sally");
 sally->age = 28;

 Employee *susan = (Employee*) malloc(sizeof(Employee));
 strcpy(susan->name, "Susan");
 susan->age = 45;

 initializeList(&linkedList);

 addHead(&linkedList, samuel);
 addHead(&linkedList, sally);
 addHead(&linkedList, susan);
[image: addHead example]

Figure 6-6. addHead example

The addTail function is shown
 below. It starts by allocating memory for a new node and assigning the
 data to the data field. Since the
 node will always be added to the tail, the node’s next field is assigned to NULL. If the linked list is empty, then the
 head pointer will be NULL and head can be assigned to the new node. If it is
 not NULL, then the tail’s next pointer is assigned to the new node.
 Regardless, the linked list’s tail
 pointer is assigned to the node:
void addTail(LinkedList *list, void* data) {
 Node *node = (Node*) malloc(sizeof(Node));
 node->data = data;
 node->next = NULL;
 if (list->head == NULL) {
 list->head = node;
 } else {
 list->tail->next = node;
 }
 list->tail = node;
}
In the following sequence, the addTail function is illustrated. The creation
 of the employee objects has not been duplicated here. The employees have
 been added in the opposite order from the previous example using the
 addTail function. This results in the
 memory allocation being the same as shown in Figure 6-6:
 initializeList(&linkedList);

 addTail(&linkedList, susan);
 addTail(&linkedList, sally);
 addTail(&linkedList, samuel);
The delete function will remove
 a node from the linked list. To simplify this function, a pointer to the
 node to be deleted is passed to it. The function’s user probably has a
 pointer to the data but not to the node holding the data. To aid in
 identifying the node, a helper function has been provided to return a
 pointer to the node: getNode. The
 getNode function is passed three
 parameters:
	A pointer to the linked list

	A pointer to a comparison function

	A pointer to the data to be found

The code for the getNode
 function follows. The variable node
 initially points to the list’s head and traverses the list until either
 a match is found or the linked list’s end is encountered. The compare function is invoked to determine
 whether a match is found. When the two data items are equal, it returns
 a zero.
Node *getNode(LinkedList *list, COMPARE compare , void* data) {
 Node *node = list->head;
 while (node != NULL) {
 if (compare(node->data, data) == 0) {
 return node;
 }
 node = node->next;
 }
 return NULL;
}
The compare function
 illustrates using a function pointer at runtime to determine which
 function to use to perform a comparison. This adds considerable
 flexibility to the linked list implementation because we do not need to
 hard code the comparison function’s name in the getNode function.
The delete function follows. To
 keep the function simple, it does not always check for null values in
 the linked list or the node passed. The first if
 statement handles a node to be deleted from the head. If the head node
 is the only node, then the head and tail are assigned null values.
 Otherwise, the head is assigned to the node following the head.
The else statement
 traverses the list from head to tail using a tmp pointer. The while loop
 will terminate if either tmp is
 assigned NULL, indicating the node
 does not exist in the list, or the node following tmp is the node we are looking for. Since this
 is a single-linked list, we need to know which node precedes the target
 node to be deleted. This knowledge is needed to assign the node
 following the target node to the preceding node’s next field. At the end of the delete function, the node is freed. The user
 is responsible for deleting the data pointed to by this node before the
 delete function is called.
void delete(LinkedList *list, Node *node) {
 if (node == list->head) {
 if (list->head->next == NULL) {
 list->head = list->tail = NULL;
 } else {
 list->head = list->head->next;
 }
 } else {
 Node *tmp = list->head;
 while (tmp != NULL && tmp->next != node) {
 tmp = tmp->next;
 }
 if (tmp != NULL) {
 tmp->next = node->next;
 }
 }
 free(node);
}
The next sequence demonstrates the use of this function. The three
 employees are added to the linked list’s head. We will use the compareEmployee function as described in the
 section Using Pointers to Support Data Structures
 to perform comparisons:
 addHead(&linkedList, samuel);
 addHead(&linkedList, sally);
 addHead(&linkedList, susan);

 Node *node = getNode(&linkedList,
 (int (*)(void*, void*))compareEmployee, sally);
 delete(&linkedList, node);
When this sequence executes, the program stack and heap will
 appear as illustrated in Figure 6-7.
[image: Deletion example]

Figure 6-7. Deletion example

The displayLinkedList function
 illustrates how to traverse a linked list as shown below. It starts at
 the head and displays each element using the function passed as the
 second argument. The node pointer is assigned the next field’s value and will terminate when the
 last node is displayed:
void displayLinkedList(LinkedList *list, DISPLAY display) {
 printf("\nLinked List\n");
 Node *current = list->head;
 while (current != NULL) {
 display(current->data);
 current = current->next;
 }
}
The following illustrates this function using the displayEmployee function developed in the
 section Using Pointers to Support Data Structures:
 addHead(&linkedList, samuel);
 addHead(&linkedList, sally);
 addHead(&linkedList, susan);

 displayLinkedList(&linkedList, (DISPLAY)displayEmployee);
The output of this sequence follows:
Linked List
Susan 45
Sally 28
Samuel 32

Using Pointers to Support a Queue

A queue is a linear data structure whose behavior is similar
 to a waiting line. It typically supports two primary operations: enqueue
 and dequeue. The enqueue operation adds an element to the queue. The
 dequeue operation removes an element from the queue. Normally, the first
 element added to a queue is the first element dequeued from a queue.
 This behavior is referred to as First-In-First-Out (FIFO).
A linked list is frequently used to implement a queue. The enqueue
 operation will add a node to the linked list’s head and the dequeue
 operation will remove a node from the tail. To illustrate the queue, we
 will use the linked list developed in the Single-Linked List.
Let’s start by using a type definition statement to define a term
 for queue. It will be based on a linked list as shown below. We can now
 use Queue to clearly designate our
 intent:
typedef LinkedList Queue;
To implement the initialization operation, all we need to do is
 use the function initializeList. Instead of calling this
 function directly, we will use the following initializeQueue function:
void initializeQueue(Queue *queue) {
 initializeList(queue);
}
In a similar manner, the following will add a node to a queue
 using the addHead function:
void enqueue(Queue *queue, void *node) {
 addHead(queue, node);
}
The previous linked list implementation does not have an explicit
 function to remove the tail node. The dequeue function that follows removes the last
 node. Three conditions are handled:
	An empty queue
	NULL is returned

	A single node queue
	Handled by the else if statement

	A multiple node queue
	Handled by the else clause

In the latter case, the tmp
 pointer is advanced node by node until it points to the node immediately
 preceding the tail node. Three operations are then performed in the
 following sequence:
	The tail is assigned to the tmp node

	The tmp pointer is advanced
 to the next node

	The tail’s next field is
 set to NULL to indicate there are
 no more nodes in the queue

This order is necessary to ensure the list’s integrity, as
 illustrated conceptually in Figure 6-8. The circled numbers
 correspond to the three steps listed above:
void *dequeue(Queue *queue) {
 Node *tmp = queue->head;
 void *data;

 if (queue->head == NULL) {
 data = NULL;
 } else if (queue->head == queue->tail) {
 queue->head = queue->tail = NULL;
 data = tmp->data;
 free(tmp);
 } else {
 while (tmp->next != queue->tail) {
 tmp = tmp->next;
 }
 queue->tail = tmp;
 tmp = tmp->next;
 queue->tail->next = NULL;
 data = tmp->data;
 free(tmp);
 }
 return data;
}
[image: dequeue function example]

Figure 6-8. dequeue function example

The data assigned to the node is returned, and the node is freed.
 These functions are illustrated in the following code sequence using the
 employees created earlier:
 Queue queue;
 initializeQueue(&queue);

 enqueue(&queue, samuel);
 enqueue(&queue, sally);
 enqueue(&queue, susan);

 void *data = dequeue(&queue);
 printf("Dequeued %s\n", ((Employee*) data)->name);
 data = dequeue(&queue);
 printf("Dequeued %s\n", ((Employee*) data)->name);
 data = dequeue(&queue);
 printf("Dequeued %s\n", ((Employee*) data)->name);
The output of this sequence follows:
Dequeued Samuel
Dequeued Sally
Dequeued Susan

Using Pointers to Support a Stack

The stack data structure is also a type of list. In this
 case, elements are pushed onto the stack’s top and then popped off. When
 multiple elements are pushed and then popped, the stack exhibits
 First-In-Last-Out (FILO) behavior. The first element pushed on to the
 stack is the last element popped off.
Like the queue’s implementation, we can use a linked list to
 support stack operations. The two most common operations are the push
 and pop operations. The push operation is effected using the addHead function. The pop operation requires
 adding a new function to remove the head node. We start by defining a
 stack in terms of a linked list as follows:
typedef LinkedList Stack;
To initialize the stack, we add an initializeStack function. This function calls
 the initializeList function:
void initializeStack(Stack *stack) {
 initializeList(stack);
}
The push operation calls the addHead function as shown below:
void push(Stack *stack, void* data) {
 addHead(stack, data);
}
The pop operation’s implementation follows. We start by assigning
 the stack’s head to a node pointer.
 It involves handling three conditions:
	The stack is empty
	The function returns NULL

	The stack contains a single element
	If the node points to the tail then the head and tail are
 the same element. The head and tail are assigned NULL, and the data is returned.

	The stack contains more than one element
	In this case, the head is assigned to the next element in
 the list, and the data is returned.

In the latter two cases, the node is freed:
void *pop(Stack *stack) {
 Node *node = stack->head;
 if (node == NULL) {
 return NULL;
 } else if (node == stack->tail) {
 stack->head = stack->tail = NULL;
 void *data = node->data;
 free(node);
 return data;
 } else {
 stack->head = stack->head->next;
 void *data = node->data;
 free(node);
 return data;
 }
}
We will reuse the employees’ instances created in the section
 Single-Linked List to demonstrate the stack. The
 following code sequence will push three employees and then pop them off
 the stack:
 Stack stack;
 initializeStack(&stack);

 push(&stack, samuel);
 push(&stack, sally);
 push(&stack, susan);

 Employee *employee;

 for(int i=0; i<4; i++) {
 employee = (Employee*) pop(&stack);
 printf("Popped %s\n", employee->name);
 }
When executed, we get the following output. Because we used the
 pop function four times, NULL was
 returned the last time:
Popped Susan
Popped Sally
Popped Samuel
Popped (null)
Other stack operations sometime include a peek operation where the
 top element is returned but is not popped off the stack.

Using Pointers to Support a Tree

The tree is a very useful data structure whose name is
 derived from the relationship between its elements. Typically, child
 nodes are attached to a parent node. The overall form is an inverted
 tree where a root node represents the data structure’s starting
 element.
A tree can have any number of children nodes. However, binary
 trees are more common where each node possesses zero, one, or two
 children nodes. The children are designated as either the left child or
 the right child. Nodes with no children are called leaf nodes, similar
 to the leaves of a tree. The examples presented in this section will
 illustrate a binary tree.
Pointers provide an obvious and dynamic way of maintaining the
 relationship between tree nodes. Nodes can be dynamically allocated and
 added to a tree as needed. We will use the following structure for a
 node. Using a pointer to void allows us to handle any type of data that
 we need:
typedef struct _tree {
 void *data;
 struct _tree *left;
 struct _tree *right;
} TreeNode;
When we add nodes to a tree, it makes sense to add them in a
 particular order. This will make many operations, such as searching,
 easier. A common ordering is to add a new node to a tree such that all
 of the node’s children possess a value less than the parent node and all
 of the children on the right possess a value greater than the parent
 node. This is called a binary search tree.
The following insertNode
 function will insert a node into a binary search tree. However, to
 insert a node, a comparison needs to be performed between the new node
 and the tree’s existing nodes. We use the COMPARE function pointer to pass the
 comparison function’s address. The first part of the function allocates
 memory for a new node and assigns the data to the node. The left and
 right children are set to NULL since
 new nodes are always added as leaves to a tree:
void insertNode(TreeNode **root, COMPARE compare, void* data) {
 TreeNode *node = (TreeNode*) malloc(sizeof(TreeNode));
 node->data = data;
 node->left = NULL;
 node->right = NULL;

 if (*root == NULL) {
 *root = node;
 return;
 }

 while (1) {
 if (compare((*root)->data, data) > 0) {
 if ((*root)->left != NULL) {
 *root = (*root)->left;
 } else {
 (*root)->left = node;
 break;
 }
 } else {
 if ((*root)->right != NULL) {
 *root = (*root)->right;
 } else {
 (*root)->right = node;
 break;
 }
 }
 }
}
First, the root is checked to determine whether the tree is empty.
 If it is, then a new node is assigned to the root and the function
 returns. The root is passed as a pointer to a pointer to a TreeNode. This is necessary because we want to
 modify the pointer passed to the function, not what the pointer points
 to. This use of two levels of indirection is detailed in Multiple Levels of Indirection.
If the tree is not empty, then an infinite loop is entered and
 will terminate when the new node has been added to the tree. With each
 loop’s iteration, the new node and current parent node are compared. On
 the basis of this comparison, the local root pointer will be reassigned to either the
 left or right child. This root
 pointer points to the current node in the tree. If the left or right
 child is NULL, then the node is added
 as a child and the loop terminates.
To demonstrate insertNode
 function, we will reuse the employee instances created in the section
 Using Pointers to Support Data Structures. The
 following sequence initializes an empty TreeNode and then inserts the three employees.
 The resulting program stack’s and heap’s state is illustrated in Figure 6-9. Some lines pointing to the
 employees have been removed to simplify the diagram. The nodes’
 placement in the heap have also been arranged to reflect the tree
 structure’s order:
 TreeNode *tree = NULL;

 insertNode(&tree, (COMPARE) compareEmployee, samuel);
 insertNode(&tree, (COMPARE) compareEmployee, sally);
 insertNode(&tree, (COMPARE) compareEmployee, susan);
[image: insertNode function]

Figure 6-9. insertNode function

Figure 6-10 illustrates the
 logical structure of this tree.
[image: Logical tree organization]

Figure 6-10. Logical tree organization

Binary trees are used for a number of purposes and can be
 traversed in three different ways: pre-order, in-order, and post-order.
 The three techniques use the same steps, but they are performed in
 different orders. The three steps are:
	Visit the node
	Process the node

	Go left
	Transfer to the left node

	Go right
	Transfer to the right node

For our purposes, visiting a node means we will display its
 contents. The three orders are:
	In-order
	Go left, visit the node, go right

	Pre-order
	Visit the node, go left, go right

	Post-order
	Go left, go right, visit the node

The functions’ implementations are shown below. Each passes the
 tree’s root and a function pointer for the display function. They are
 recursive and will call themselves as long as the root node passed to it
 is not null. They only differ in the order the three steps are
 executed:
void inOrder(TreeNode *root, DISPLAY display) {
 if (root != NULL) {
 inOrder(root->left, display);
 display(root->data);
 inOrder(root->right, display);
 }
}

void postOrder(TreeNode *root, DISPLAY display) {
 if (root != NULL) {
 postOrder(root->left, display);
 postOrder(root->right, display);
 display(root->data);
 }
}

void preOrder(TreeNode *root, DISPLAY display) {
 if (root != NULL) {
 display(root->data);
 preOrder(root->left, display);
 preOrder(root->right, display);
 }
}
The following code sequence invokes these functions:
 preOrder(tree, (DISPLAY) displayEmployee);
 inOrder(tree, (DISPLAY) displayEmployee);
 postOrder(tree, (DISPLAY) displayEmployee);
Table 6-1 shows the output of
 each function call based on the previous initialization of the
 tree.
Table 6-1. Traversal techniques
	pre-order	Samuel 32 Sally 28 Susan 45
	in-order	Sally 28 Samuel 32 Susan 45
	post-order	Sally 28 Susan 45 Samuel 32

The in-order traversal will return a sorted list of the tree’s
 members. The pre-order and post-order traversal can be used to evaluate
 arithmetic expressions when used in conjunction with a stack and
 queue.

Summary

The power and flexibility of pointers is exemplified when used to
 create and support data structures. Combined with dynamic memory
 allocation of structures, pointers enable the creation of data
 structures that use memory efficiently and can grow and shrink to meet
 the application’s needs.
We started this chapter with a discussion of how memory is
 allocated for structures. Padding between the field’s structures and
 between arrays of structures is possible. Dynamic memory allocation and
 deallocation can be expensive. We examined one technique to maintain a
 pool of structures to minimize this overhead.
We also demonstrated the implementation of several commonly used
 data structures. The linked list was used to support several of these
 data structures. Function pointers were used to add flexibility to these
 implementations by allowing the comparison or display function to be
 determined at runtime.

Chapter 7. Security Issues and the Improper Use of Pointers

Few applications exist where security and reliability are not
 significant concerns. This concern is reinforced by frequent reports of
 security breaches and application failures. The responsibility of securing
 an application largely falls on the developer. In this chapter, we will
 examine practices to make applications more secure and reliable.
Writing secure applications in C can be difficult because of several
 inherent aspects of the language. For example, C does not prevent the
 programmer from writing outside an array’s bounds. This can result in
 corrupted memory and introduce potential security risks. In addition, the improper use of
 pointers is often at the root of many security problems.
When an application behaves in unpredictable ways, it may not seem to
 be a security issue, at least in terms of unauthorized access. However, it
 is sometimes possible to take advantage of this behavior, which can result
 in a denial of service and thus compromise the application. Unpredictable
 behavior that results from improper use of pointers has been illustrated
 elsewhere in this book. In this chapter, we will identify additional
 improper usages of pointers.
The CERT organization
 is a good source for a more comprehensive treatment of security issues in C
 and other languages. This organization studies Internet security
 vulnerabilities. We will focus on those security issues related to the use
 of pointers. Many of the CERT organization’s security concerns can be traced
 back to the improper use of pointers. Understanding pointers and the proper
 ways to use them is an important tool for developing secure and reliable
 applications. Some of these topics have been addressed in earlier chapters,
 not necessarily from a security standpoint but rather from a programming
 practice standpoint.
There have been improvements in security introduced by operating
 systems (OS). Some of these improvements are reflected in how memory is
 used. Although improvements are typically beyond the control of developers,
 they will affect the program. Understanding these issues will help explain
 an application’s behavior. We will focus on Address Space Layout
 Randomization and Data Execution
 Prevention.
The Address Space Layout Randomization
 (ASLR) process arranges an application’s data region randomly in memory.
 These data regions include the code, stack, and heap. Randomizing the
 placement of these regions makes it more difficult for attackers to predict
 where memory will be placed and thus more difficult to use them.
 Certain types of attacks, such as the
 return-to-libc attack, overwrite portions of the
 stack and transfer control to this region. This area is frequently the
 shared C library, libc. If the location
 of the stack and libc are not known, then
 such attacks will be less likely to succeed.
The Data Execution Prevention (DEP)
 technique prevents the execution of code if it is in a nonexecutable region
 of memory. In some types of attacks, a region of memory is overwritten with
 a malicious code and then control is transferred to it. If this region of
 code is nonexecutable, such as the stack or heap, then it is prevented from
 executing. This technique can be implemented either in hardware or in
 software.
In this chapter, we will examine security issues from several
 perspectives:
	Declaration and initialization of pointers

	Improper pointer usage

	Deallocation problems

Pointer Declaration and Initialization

Problems can arise with the declaration and initialization of
 pointers or, more correctly, the failure to initialize pointers. In this
 section, we will examine situations where these types of problems can
 occur.
Improper Pointer Declaration

Consider the following declaration:
 int* ptr1, ptr2;
There is nothing necessarily wrong with the declaration; however,
 it may not be what was intended. This declaration declared ptr1 as a pointer to an integer and ptr2 as an integer. The asterisk was purposely
 placed next to the data type, and a space was placed before ptr1. This placement makes no difference to
 the compiler, but to the reader, it may imply that both ptr1 and ptr2 are declared as pointers to integers.
 However, only ptr1 is a
 pointer.
The correct approach is to declare them both as pointers using a
 single line, as shown below:
 int *ptr1, *ptr2;
Note
It is an even better practice to declare each variable on its
 own line.

Another good practice involves using type definitions instead of
 macro definitions. These definitions allow the compiler to check scoping
 rules, which is not always true with macro definitions.
Variables may be declared with the assistance of a directive, as
 shown below. Here, a pointer to an integer is wrapped in a define directive and then used to declare
 variables:
#define PINT int*
PINT ptr1, ptr2;
However, the result is the same problem as described above. A better
 approach is shown below using a type definition:
typedef int* PINT;
PINT ptr1, ptr2;
Both variables are declared as pointers to integers.

Failure to Initialize a Pointer Before It Is Used

Using a pointer before it is initialized can result in a
 run-time error. This is sometimes referred to as a wild
 pointer. A simple example follows where a pointer to an
 integer is declared but is never assigned a value before it is
 used:
 int *pi;
 ...
 printf(“%d\n”,*pi);
Figure 7-1 illustrates how memory is allocated at
 this point.
[image: Wild pointer]

Figure 7-1. Wild pointer

The variable pi has not been
 initialized and will contain garbage, indicated by the ellipses.
 Most likely this sequence will terminate during execution if
 the memory address stored in pi is
 outside the valid address space for the application. Otherwise, the
 value displayed will be whatever happens to be at that address and will
 be presented as an integer. If we use a pointer to a string instead, we
 will frequently see a series of strange characters displayed until the
 terminating zero is reached.

Dealing with Uninitialized Pointers

Nothing inherent in a pointer tells us whether it is valid. Thus,
 we cannot simply examine its contents to determine whether it is valid.
 However, three approaches are used to deal with uninitialized
 pointers:
	Always initialize a pointer with NULL

	Use the assert
 function

	Use third-party tools

Initializing a pointer to NULL will
 make it easier to check for proper usage. Even then, checking for a null
 value can be tedious, as shown below:
 int *pi = NULL;
 ...
 if(pi == NULL) {
 // pi should not be dereferenced
 } else {
 // pi can be used
 }
The assert function can
 also be used to test for null pointer values. In the following example,
 the pi variable is tested for a null
 value. If the expression is true, then nothing happens. If the
 expression is false, then the program terminates. Thus, the program will
 terminate if the pointer is null.
 assert(pi != NULL);
For debug versions of the application, this approach may be
 acceptable. If the pointer is null, then the output will appear similar
 to the following:
Assertion failed: pi != NULL
The assert function is
 found in the assert.h header
 file.
Third-party tools can also be used to help identify these types of
 problems. In addition, certain compiler options can be useful, as
 addressed in the section Using Static Analysis Tools.

Pointer Usage Issues

In this section, we will examine misuse of the dereference operator
 and array subscripts. We will also examine problems related to strings,
 structures, and function pointers.
Many security issues revolve around the concept of a buffer
 overflow. Buffer overflow occurs when memory outside the object’s bounds
 is overwritten. This memory may be part of the program’s address space or
 another process. When the memory is outside of the program address space, most
 operating systems will issue a segmentation fault and terminate the
 program. Termination for this reason constitutes a denial of service attack when
 done maliciously. This type of attack does not attempt to gain
 unauthorized access but tries to take down the application and potentially
 a server.
If the buffer overflow occurs within the application’s address
 space, then it can result in unauthorized access to data and/or the
 transfer of control to another segment of code, thereby potentially
 compromising the system. This is of particular concern if the application
 is executing with supervisor privileges.
Buffer overflow can happen by:
	Not checking the index values used when accessing an array’s
 elements

	Not being careful when performing pointer arithmetic with array
 pointers

	Using functions such as gets
 to read in a string from standard input

	Using functions such as strcpy and strcat improperly

When buffer overflow occurs with a stack frame element, it is
 possible to overwrite the return address portion of the stack frame with a
 call to malicious code created at the same time. See Program Stack and Heap for more detail about the stack
 frame. When the function returns, it will transfer control to the
 malicious function. This function can then perform any operation,
 restrained only by the current user’s privilege level.
Test for NULL

Always check the return value when using a malloc type function. Failure to do so can
 result in abnormal termination of the program. The following illustrates
 the general approach:
 float *vector = malloc(20 * sizeof(float));
 if(vector == NULL) {
 // malloc failed to allocate memory
 } else {
 // Process vector
 }

Misuse of the Dereference Operator

A common approach for declaring and initializing a pointer
 is shown below:
 int num;
 int *pi = #
Another seemingly equivalent declaration sequence follows:
 int num;
 int *pi;
 *pi = #
However, this is not correct. Notice the use of the dereference
 operator on the last line. We are attempting to assign the address of
 num not to pi but rather to the memory location specified
 by the contents of pi. The pointer,
 pi, has not been initialized yet. We
 have made a simple mistake of misusing the dereference operator. The
 correct sequence follows:
 int num;
 int *pi;
 pi = #
In the original declaration, int *pi =
 &num, the asterisk declared the variable to be a pointer.
 It was not used as the dereference operator.

Dangling Pointers

A dangling pointer occurs when a pointer is freed but still
 references that memory. This problem is described in detail in Dangling Pointers. If an attempt is made to access this
 memory later, then its contents may well have changed. A write operation
 against this memory may corrupt memory, and a read operation may return
 invalid data. Either could potentially result in the termination of the
 program.
This has not been considered a security concern until recently. As
 explained in Dangling
 Pointer, there exists a potential for exploiting a dangling
 pointer. However, this approach is based on the exploitation of the
 VTable (Virtual Table) in C++. A VTable is an
 array of function pointers used to support virtual methods in C++.
 Unless you are using a similar approach involving function pointers,
 this should not be a concern in C.

Accessing Memory Outside the Bounds of an Array

Nothing can prevent a program from accessing memory outside of
 the space allocated for an array. In this example, we declare and
 initialize three arrays to demonstrate this behavior. The arrays are
 assumed to be allocated in consecutive memory locations.
 char firstName[8] = "1234567";
 char middleName[8] = "1234567";
 char lastName[8] = "1234567";

 middleName[-2] = 'X';
 middleName[0] = 'X';
 middleName[10] = 'X';

 printf("%p %s\n",firstName,firstName);
 printf("%p %s\n",middleName,middleName);
 printf("%p %s\n",lastName,lastName);
To illustrate how memory is overwritten, three arrays are
 initialized to a simple sequence of numbers. While the behavior of the
 program will vary by compiler and machine, this will normally execute
 and overwrite characters in firstName
 and lastName. The output is shown
 below. Figure 7-2 illustrates how
 memory is allocated:
116 12X4567
108 X234567
100 123456X
[image: Using invalid array indexes]

Figure 7-2. Using invalid array indexes

As explained in Chapter 4, the
 address calculated using subscripts does not check the index values.
 This is a simple case of buffer overflow.

Calculating the Array Size Incorrectly

When passing an array to a function, always pass the size of
 the array at the same time. This information will help the function
 avoid exceeding the bounds of the array. In the replace function shown below, the string’s
 address is passed along with a replacement character and the buffer’s
 size. The function’s purpose is to replace all of the characters in the
 string up to the NUL character with
 the replacement character. The size argument prevents the function from
 writing past the end of the buffer:
void replace(char buffer[], char replacement, size_t size) {
 size_t count = 0;
 while(*buffer != NUL && count++<size) {
 *buffer = replacement;
 buffer++;
 }
}
In the following sequence, the name array can only hold up to seven
 characters plus the NUL termination
 character. However, we purposely write past the end of the array to
 demonstrate the replace function. In
 the following sequence, the replace
 function is passed to the name and a replacement character of
 +:
 char name[8];
 strcpy(name,"Alexander");
 replace(name,'+',sizeof(name));
 printf("%s\n", name);
When this code is executed, we get the following output:
 ++++++++r
Only eight plus-sign characters were added to the array. While the
 strcpy function permitted buffer
 overflow, the replace function did
 not. This assumes that the size passed is valid. Functions like strcpy that do not pass the buffer’s size
 should be used with caution. Passing the buffer’s size provides an
 additional layer of protection.

Misusing the sizeof Operator

An example of misusing the sizeof operator occurs when we attempt to
 check our pointer bounds but do it incorrectly. In the following
 example, we allocate memory for an integer array and then initialize
 each element to 0.
 int buffer[20];
 int *pbuffer = buffer;
 for(int i=0; i<sizeof(buffer); i++) {
 *(pbuffer++) = 0;
 }
However, the sizeof(buffer)
 expression returns 80 since the size of the buffer in bytes is 80 (20
 multiplied by 4 byte elements). The for loop is
 executed 80 times instead of 20 and will frequently result in a memory
 access exception terminating the application. Avoid this by using the
 expression sizeof(buffer)/sizeof(int)
 in the test condition of the for statement.

Always Match Pointer Types

It is a good idea to always use the appropriate pointer type
 for the data. To demonstrate one possible pitfall, consider the
 following sequence. A pointer to an integer is assigned to a pointer to
 a short:
 int num = 2147483647;
 int *pi = #
 short *ps = (short*)pi;
 printf("pi: %p Value(16): %x Value(10): %d\n", pi, *pi, *pi);
 printf("ps: %p Value(16): %hx Value(10): %hd\n",
 ps, (unsigned short)*ps, (unsigned short)*ps);
The output of the snippet follows:
pi: 100 Value(16): 7fffffff Value(10): 2147483647
ps: 100 Value(16): ffff Value(10): -1
Notice that it appears that the first hexadecimal digit stored at
 address 100 is 7 or f,
 depending on whether it is displayed as an integer or as a
 short. This apparent contradiction
 is an artifact of executing this sequence on a little endian machine.
 The layout of memory for the constant at address 100 is illustrated in
 Figure 7-3.
[image: Mismatched pointer types]

Figure 7-3. Mismatched pointer types

If we treat this as a short number and only use the first two
 bytes, then we get the short value of –1. If we treat this as an integer
 and use all four bytes, then we get 2,147,483,647. These types of subtle
 problems are what make C and pointers such a challenging subject.

Bounded Pointers

The term bounded pointers describes
 pointers whose use is restricted to only valid regions. For example,
 with an array declared with 32 elements, a pointer used with this array
 would be restricted from accessing any memory before or after the
 array.
C does not provide any direct support for this approach. However,
 it can be enforced explicitly by the programmer, as shown below:
 #define SIZE 32

 char name[SIZE];
 char *p = name;
 if(name != NULL) {
 if(p >= name && p < name+SIZE) {
 // Valid pointer - continue
 } else {
 // Invalid pointer - error condition
 }
 }
This approach can get tedious. Instead, static analysis as
 discussed in the section Using Static Analysis Tools can be helpful.
An interesting variation is to create a pointer validation function. For this
 to happen, the initial location and range must be known.
Another approach is to use the Bounded Model Checking for
 ANSI-C and C++ (CBMC). This application checks for various safety and
 security issues within C programs and finds array bounds and buffer
 overflow problems.
Note
Smart pointers, available in C++, provide a way of simulating
 a pointer and support bounds checking. Unfortunately, they are not
 available in C.

String Security Issues

Security issues related to a string generally occur when we write
 past the end of a string. In this section, we will focus on the
 “standard” functions that contribute to this problem.
The use of string functions such as strcpy and strcat can result in buffer overflow if they
 are not used carefully. Several approaches have been suggested to
 replace these methods, but none have become widely accepted.
 The strncpy and strncat functions can provide some support for
 this operation where a size_t
 parameter specifies the maximum number of characters to copy. However,
 they can also be error prone if the number of characters is not
 calculated correctly.
In C11 (Annex K), the strcat_s and strcpy_s functions have been added. They
 return an error if buffer overflow occurs. Currently, they are only
 supported by Microsoft Visual C++. The following example illustrates the
 use of the strcpy_s function. It
 takes three parameters: a destination buffer, the size of the
 destination buffer, and a source buffer. If the return value is zero,
 then no errors occurred. However, in this example, an error will result
 since the source is too large to fit into the destination buffer:
char firstName [8];
int result;
result = strcpy_s(firstName,sizeof(firstName),"Alexander");
The scanf_s and wscanf_s functions are also available to
 protect against buffer overflow.
The gets function reads a
 string from standard input and stores the character in a designated
 buffer. It can write past the buffer’s declared length. If the string is
 too long, then buffer overflow will occur.
Also, the strlcpy and
 srtlcat functions are supported on
 some Linux systems but not by GNU C library. They are thought by some to
 create more problems than they solve and are not well documented.
The use of some functions can result in an attacker accessing
 memory using a technique known as format string
 attacks. In these attacks, a user-supplied format string,
 illustrated below, is crafted to enable access to memory and potentially
 the ability to inject code. In this simple program, the second command
 line argument is used as the first parameter of the printf function:
int main(int argc, char** argv) {
 printf(argv[1]);
 ...
}
This program can be executed using a command similar to the
 following:
main.exe "User Supplied Input"
Its output will appear as:
User Supplied Input
Although this program is innocuous, a more sophisticated attack
 can do real damage. Comprehensive coverage of this topic is not provided
 here; however, more detail on how to effect such an attack can be found
 at hackerproof.org.
Functions such as printf,
 fprintf, snprintf, and syslog all have a format string as an
 argument. The simplest defense against this type of attack is to never
 use a user-supplied format string with these functions.

Pointer Arithmetic and Structures

Pointer arithmetic should only be used with arrays. Because
 arrays are guaranteed to be allocated in a contiguous block of memory,
 pointer arithmetic will result in a valid offset. However, they should
 not be used within structures, as the structure’s fields may not be
 allocated in consecutive regions of memory.
This is illustrated with the following structure. The name field is allocated 10 bytes, and is
 followed by an integer. However, since the integer will be aligned on a
 four-byte boundary, there will be a gap between the two fields. Gaps of
 this type are explained in the sectionHow Memory Is Allocated for a Structure.
typedef struct _employee {
 char name[10];
 int age;
} Employee;
The following sequence attempts to use a pointer to access the
 age field of the structure:
 Employee employee;
 // Initialize eployee
 char *ptr = employee.name;
 ptr += sizeof(employee.name);
The pointer will contain the address 110, which is the address of
 the two bytes found between the two fields. Dereferencing the pointer
 will interpret the four bytes at address 110 as an integer. This is
 illustrated in Figure 7-4.
[image: Structure padding example]

Figure 7-4. Structure padding example

Warning
Improperly aligned pointers can result in an abnormal program
 termination or retrieval of bad data. In addition, slower pointer
 access is possible if the compiler is required to generate additional
 machine code to compensate for the improper alignment.

Even if the memory within a structure is contiguous, it is not a
 good practice to use pointer arithmetic with the structure’s fields. The
 following structure defines an Item
 consisting of three integers. While the three integer fields will
 normally be allocated in consecutive memory locations, there is no
 guarantee that they will be:
typedef struct _item {
 int partNumber;
 int quantity;
 int binNumber;
}Item;
The following code sequence declares a part and then uses pointer
 arithmetic to access each field:
 Item part = {12345, 35, 107};
 int *pi = &part.partNumber;
 printf("Part number: %d\n",*pi);
 pi++;
 printf("Quantity: %d\n",*pi);
 pi++;
 printf("Bin number: %d\n",*pi);
Normally, the output will be as expected, but it is not guaranteed
 to work. A better approach is to assign each field to pi:
 int *pi = &part.partNumber;
 printf("Part number: %d\n",*pi);
 pi = &part.quantity;
 printf("Quantity: %d\n",*pi);
 pi = &part.binNumber;
 printf("Bin number: %d\n",*pi);
Even better, do not use pointers at all, as shown below:
 printf("Part number: %d\n",part.partNumber);
 printf("Quantity: %d\n",part.quantity);
 printf("Bin number: %d\n",part.binNumber);

Function Pointer Issues

Functions and function pointers are used to control a program’s
 execution sequence, but they can be misused, resulting in unpredictable
 behavior. Consider the use of the function getSystemStatus. This function returns an
 integer value that reflects the system’s status:
int getSystemStatus() {
 int status;
 ...
 return status;
}
The best way to determine whether the system status is zero
 follows:
 if(getSystemStatus() == 0) {
 printf("Status is 0\n");
 } else {
 printf("Status is not 0\n");
 }
In the next example, we forget to use the open and close
 parentheses. The code will not execute properly:
 if(getSystemStatus == 0) {
 printf("Status is 0\n");
 } else {
 printf("Status is not 0\n");
 }
The else clause will always be executed. In the
 logical expression, we compared the address of the function with 0
 instead of calling the function and comparing its return value to 0.
 Remember, when a function name is used by itself, it returns the address
 of the function.
A similar mistake is using a function return value directly
 without comparing its result to some other value. The address is simply
 returned and evaluated as true or false. The address of the function is
 not likely to be zero. As a result, the address returned will be
 evaluated as true since C treats any nonzero value as true:
 if(getSystemStatus) {
 // Will always be true
 }
We should have written the function call as follows to determine
 whether the status is zero.
 if(getSystemStatus()) {
Do not assign a function to a function pointer when their
 signatures differ. This can result in undefined behavior. An example of
 this misuse is shown below:
 int (*fptrCompute)(int,int);
 int add(int n1, int n2, int n3) {
 return n1+n2+n3;
 }

 fptrCompute = add;
 fptrCompute(2,5);
We attempted to invoke the add
 function with only two arguments when it expected three arguments. This
 will compile, but the output is indeterminate.
A function pointer executes different functions, depending on the
 address assigned to it. For example, we may want to use the printf function for normal operations but
 change it to a different function for specialized logging purposes.
 Declaring and using such a function pointer is shown below:
 int (*fptrIndirect)(const char *, ...) = printf;
 fptrIndirect("Executing printf indirectly");
It may be possible for an attacker to use buffer overflow to
 overwrite the function pointer’s address. When this happens, control can
 be transferred to an arbitrary location in memory.

Memory Deallocation Issues

Even when memory has been deallocated, we are not necessarily
 through with the pointer or the deallocated memory. One concern deals with
 what happens when we try to free the same memory twice. In addition, once
 memory is freed, we may need to be concerned with protecting any residual
 data. We will examine these issues in this section.
Double Free

Freeing a block of memory twice is referred to as double free, as
 explained in Double Free. The following illustrates
 how this can be done:
 char *name = (char*)malloc(...);
 ...
 free(name); // First free
 ...
 free(name); // Double free
In an earlier version of the zlib compression library, it
 was possible for a double-free operation to result in a denial of
 service attack or possibly to insert code into the program. However,
 this is extremely unlikely and the vulnerability has been addressed in
 newer releases of the library. More information about this vulnerability
 can be found at cert.org.
A simple technique to avoid this type of vulnerability is to
 always assign NULL to a pointer after it has been freed. Subsequent
 attempts to free a null pointer will be ignored by most heap
 managers.
 char *name = (char*)malloc(...);
 ...
 free(name);
 name = NULL;
In the section Writing your own free function, we developed a function
 to achieve this effect.

Clearing Sensitive Data

It is a good idea to overwrite sensitive data in memory once
 it is no longer needed. When your application terminates, most operating
 systems do not zero out or otherwise manipulate the memory used by your
 application. Your old space may be allocated to another program, which
 will have access to its contents. Overwriting sensitive data will make
 it more difficult for another program to extract useful information from
 program address space previously used to hold sensitive data. The
 following sequence illustrates zeroing out of sensitive data in a
 program:
 char name[32];
 int userID;
 char *securityQuestion;

 // assign values
 ...

 // Delete sensitive information
 memset(name,0,sizeof(name));
 userID = 0;
 memset(securityQuestion,0,strlen(securityQuestion));
If name has been declared as a pointer, then we
 should clear its memory before we deallocate it, as shown below:
 char *name = (char*)malloc(...);
 ...
 memset(name,0,sizeof(name));
 free(name);

Using Static Analysis Tools

Numerous static analysis tools are available to detect improper use
 of pointers. In addition, most compilers possess options to detect many of
 the issues addressed in this chapter. For example, the GCC compiler’s -Wall
 option enables the reporting of all compiler warnings.
The following illustrates the warnings produced by some of the
 examples included in this chapter. Here we forget to use open and close
 parentheses for a function call:
 if(getSystemStatus == 0) {
The result is the following warning:
warning: the address of 'getSystemStatus' will never be NULL
We make essentially the same mistake here:
 if(getSystemStatus) {
However, the warning is different:
warning: the address of 'getSystemStatus' will always evaluate as 'true'
Using incompatible pointer types will result in a warning:
int (*fptrCompute)(int,int);
int addNumbers(int n1, int n2, int n3) {
 return n1+n2+n3;
}

 ...
 fptrCompute = addNumbers;
The warning follows:
warning: assignment from incompatible pointer type
Failure to initialize a pointer is usually a problem:
 char *securityQuestion;
 strcpy(securityQuestion,"Name of your home town");
The warning generated is surprisingly lucid:
warning: 'securityQuestion' is used uninitialized in this function
Numerous static analysis tools are also available. Some are free,
 and others are available for a fee. They generally provide enhanced
 diagnostic capabilities beyond those provided by most compilers. Because
 of their complex nature, examples are beyond the scope of this book.

Summary

In this chapter, we investigated how pointers can affect an
 application’s security and reliability. These issues were organized around
 the declaration and initialization of pointers, the use of pointers, and
 memory deallocation problems. For example, it is important to initialize a
 pointer before it is used and to potentially clean up the memory used by a
 string once the memory is no longer needed. Setting a pointer to NULL can be an effective technique in many of
 these situations.
Pointers can be misused in several ways. Many of these involve
 overwriting memory outside the string, a form of buffer overflow. The
 misuse of pointers can cause undefined behavior in several areas,
 including mismatching pointer types and incorrect pointer
 arithmetic.
We illustrated various techniques to avoid these types of problems.
 Many involved simply understanding how pointers and strings are supposed
 to be used. We also touch on how compilers and static analysis tools can
 be used to identify potential problem areas.

Chapter 8. Odds and Ends

Pointers are vital to almost all aspects of C. Many of these areas are
 fairly well defined, such as arrays and functions. This chapter examines
 several topics that do not neatly fit into the previous chapters. Coverage
 of these topics will round out your knowledge of how pointers work.
In this chapter, we will examine several topics related to
 pointers:
	Casting pointers

	Accessing hardware devices

	Aliasing and strict aliasing

	Use of the restrict
 keyword

	Threads

	Object-oriented techniques

With regards to threads, there are two areas of interest. The
 first deals with the basic problem of sharing data between threads using
 pointers. The second discusses how pointers are used to support callbacks.
 An operation may invoke a function to perform a task. When the actual
 function called changes, this is referred to as a callback function. For
 example, the sort function used in Chapter 5 is an example of a callback function.
 A callback is also used to communicate between threads.
We will cover two approaches for providing object-oriented type
 support within C. The first is the use of an opaque pointer. This technique
 hides a data structure’s implementation details from users. The second
 technique will demonstrate how to effect polymorphic type behavior in
 C.
Casting Pointers

Casting is a basic operator that can be quite useful when used with
 pointers. Casting pointers are useful for a number of reasons,
 including:
	Accessing a special purpose address

	Assigning an address to represent a port

	Determining a machine’s endianness

We will also address a topic closely related to casting in the
 sectionUsing a Union to Represent a Value in Multiple Ways.
Note
The endianness of a machine generally refers to the order of
 bytes within a data type. Two common types of endian include little
 endian and big endian. Little endian means the low-order bytes are
 stored in the lowest address, while big endian means the high-order
 bytes are stored at the lowest address.

We can cast an integer to a pointer to an integer as shown
 below:
 int num = 8;
 int *pi = (int*)num;
However, this is normally a poor practice as it allows access to an
 arbitrary address, potentially a location the program is not permitted to
 access. This is illustrated in Figure 8-1, where address 8 is not
 in the application’s address space. If the pointer is dereferenced, it
 will normally result in the application’s termination.
[image: Casting an integer to a bad location]

Figure 8-1. Casting an integer to a bad location

For some situations, such as when we need to address memory location
 zero, we may need to cast a pointer to an integer and then cast it back to
 a pointer. This is more common on older systems where a pointer’s size is
 the same size as an integer. However, this does not always work. The
 approach is illustrated below, where the output is
 implementation-dependent:
 pi = #
 printf("Before: %p\n",pi);
 int tmp = (int)pi;
 pi = (int*)tmp;
 printf("After: %p\n",pi);
Casting a pointer to an integer and then back to a pointer has never
 been considered good practice. If this needs to be done, consider using a
 union, as discussed in the sectionUsing a Union to Represent a Value in Multiple Ways.
Remember that casting to and from an integer is different from
 casting to and from void, as illustrated in Pointer to void.
Note
The term handle is sometimes confused
 with a pointer. A handle is a reference to a system resource. Access to
 the resource is provided through the handle. However, the handle
 generally does not provide direct access to the resource. In contrast, a
 pointer contains the resource’s address.

Accessing a Special Purpose Address

The need to access a special purpose address often occurs on
 embedded systems where there is minimal operating system mediation. For
 example, in some low-level OS kernels the address of video RAM for a PC
 is 0xB8000. This address holds the character to be displayed in the
 first row and first column when in text mode. We can assign this address
 to a pointer and then assign a character to the location, as illustrated
 below. The memory layout is shown in Figure 8-2:
 #define VIDEO_BASE 0xB8000
 int *video = (int *) VIDEO_BASE;
 *video = 'A';
If appropriate, the address can also be read. This is not
 typically done for video memory.
[image: Addressing video memory on a PC]

Figure 8-2. Addressing video memory on a PC

When you need to address memory at location zero, sometimes the
 compiler will treat it as a NULL
 pointer value. Access to location zero is often needed in low-level
 kernel programs. Here are a few techniques to address this
 situation:
	Set the pointer to zero (this does not always work)

	Assign a zero to an integer and then cast the integer to the
 pointer

	Use a union as discussed in the section Using a Union to Represent a Value in Multiple Ways

	Use the memset
 function to assign a zero to the pointer

An example of using the memset
 function follows. Here, the memory referenced by ptr is set to all zeros:
memset((void*)&ptr, 0, sizeof(ptr));
On systems where addressing memory location zero is needed, the
 vendor will frequently have a workaround.

Accessing a Port

A port is both a hardware and a software concept. Servers
 use software ports to indicate they should receive certain messages sent
 to the machine. A hardware port is typically a physical input/output
 system component connected to an external device. By either reading or
 writing to a hardware port, information and commands can be processed by
 the program.
Typically, software that accesses a port is part of the OS. The
 following illustrates the use of pointers to access a port:
 #define PORT 0xB0000000
 unsigned int volatile * const port = (unsigned int *) PORT;
The machine uses the hexadecimal value address to designate a
 port. The data is treated as an unsigned integer. The volatile keyword
 qualifier indicates that the variable can be changed outside of the
 program. For example, an external device may write data to a port. This
 write operation is performed independent of the computer’s processor.
 Compilers will sometimes temporarily use a cache, or register, to hold
 the value in a memory location for optimization purposes. If the
 external write modifies the memory location, then this change will not
 be reflected in the cached or register value.
Using the volatile keyword will prevent the runtime system from
 using a register to temporarily store the port value. Each port access
 requires the system to read or write to the port instead of reading a
 possibly stale value stored in a register. We don’t want to declare all
 variables as volatile, as this will prevent the compiler from performing
 certain types of optimizations.
The application can then read or write to the port by
 dereferencing the port pointer as follows. The layout of memory is shown
 in Figure 8-3, where the External Device
 can read/write to the memory at 0xB0000000:
 *port = 0x0BF4; // write to the port
 value = *port; // read from the port
[image: Accessing a port]

Figure 8-3. Accessing a port

Warning
It is not a good idea to access volatile memory with a
 nonvolatile variable. Using such a variable can result in undefined
 behavior.

Accessing Memory using DMA

Direct Memory Access (DMA) is a low-level operation that assists in transferring data
 between main memory and some device. It is not part of the ANSI C
 specification but operating systems typically provide support for this
 operation. DMA operations are normally conducted in parallel with the
 CPU. This frees up the CPU for other processing and can result in better
 performance.
The programmer will invoke a DMA function and then wait for
 the operation’s completion. Often, a callback function is provided by
 the programmer. When the operation completes, the callback function is
 invoked by the operating system. The callback function is specified
 using a function pointer and is discussed further in the section Using Function Pointers to Support Callbacks.

Determining the Endianness of a Machine

The cast operator can also be used to determine the
 endianness of architecture. Endian refers to the
 order of bytes in a unit of memory. The endianness is usually referred
 to as either little endian or big
 endian. For example, for a four-byte representation of an
 integer using little endian ordering, the integer’s least significant
 byte is stored in the lowest address of the four bytes.
In the following example, we cast an integer’s address as a
 pointer to a char. The individual
 bytes are then displayed:
 int num = 0x12345678;
 char* pc = (char*) #
 for (int i = 0; i < 4; i++) {
 printf("%p: %02x \n", pc, (unsigned char) *pc++);
 }
The output of this code snippet as executed on an Intel PC
 reflects a little-endian architecture, as shown below. Figure 8-4 illustrates how these values are
 allocated in memory:
100: 78
101: 56
102: 34
103: 12
[image: Endian example]

Figure 8-4. Endian example

Aliasing, Strict Aliasing, and the restrict Keyword

One pointer is said to alias another pointer if they both
 reference the same memory location. This is not uncommon, and it can
 present a number of problems. In the following code sequence, two pointers
 are declared and are both assigned the same address:
 int num = 5;
 int* p1 = #
 int* p2 = #
When the compiler generates code for pointers, it has to assume that
 aliasing may occur unless told otherwise. The use of aliasing imposes
 restrictions on compiler-generated code. If two pointers reference the
 same location, either can potentially modify that location. When the
 compiler generates code to read or write to that location, it is not
 always able to optimize the code by storing the value in a register. It is
 forced to perform machine-level load and store operations with each
 reference. The repeated load/store sequence can be inefficient. In some
 situations, the compiler must also be concerned about the order in which
 the operations are performed.
Strict aliasing is another form of aliasing. Strict aliasing does not allow
 a pointer of one data type to alias a pointer of a different data type. In
 the following code sequence, a pointer to an integer aliases a pointer to
 a float. This violates the strict aliasing rule. The sequence determines
 whether the number is negative. Instead of comparing its argument to zero
 to see whether it is positive, this approach will execute faster:
 float number = 3.25f;
 unsigned int *ptrValue = (unsigned int *)&number;
 unsigned int result = (*ptrValue & 0x80000000) == 0;
Note
Strict aliasing does not apply to pointers differing only by sign
 or qualifier. The following are all valid strict aliases:
 int num;
 const int *ptr1 = #
 int *ptr2 = #
 int volatile ptr3 = #

However, there are situations where the ability to use multiple
 representations of the same data can be useful. To avoid aliasing
 problems, several techniques are available:
	Use a union

	Disable strict aliasing

	Use a pointer to char

A union of two data types can get around the strict aliasing
 problem. This is discussed in the section Using a Union to Represent a Value in Multiple Ways. If your
 compiler has an option to disable strict aliasing, it can be turned off.
 The GCC compiler has the following compiler options:
	-fno-strict-aliasing to turn
 it off

	-fstrict-aliasing to turn it
 on

	-Wstrict-aliasing to warn of
 strict aliasing-related problems

Code requiring strict aliasing to be turned off probably reflects
 poor memory access practices. When possible, take time to resolve these
 issues instead of turning off strict aliasing.
Note
Compilers do not always do a good job at reporting alias-related
 warnings. They can sometimes miss aliases and may sometimes report alias
 problems where they don’t exist. It is ultimately up to the programmer
 to identify alias conditions.

A pointer to char is always
 assumed to potentially alias any object. Thus, it can be used safely in
 most situations. However, casting a pointer to one data type to a pointer
 to char and then casting the pointer to
 char to a second pointer data type will
 result in undefined behavior and should be avoided.
Using a Union to Represent a Value in Multiple Ways

C is a typed language. When a variable is declared, a type
 is assigned to it. Multiple variables can exist with different types. At
 times, it may be desirable to convert one type to another type. This is
 normally achieved with casting but can also be performed using a union.
 The term type punning describes the
 technique used to subvert the type system.
When the conversion involves pointers, serious problems can
 result. To illustrate this technique, we will use three different
 functions. These will determine whether a floating point number is
 positive.
The first function shown below uses a union of a float and an
 unsigned integer. The function first assigns the floating point value to
 the union and then extracts the integer to perform the test:
typedef union _conversion {
 float fNum;
 unsigned int uiNum;
} Conversion;

int isPositive1(float number) {
 Conversion conversion = { .fNum =number};
 return (conversion.uiNum & 0x80000000) == 0;
}
This will work correctly and does not involve aliasing because no
 pointers are involved. The next version uses a union that contains
 pointers to the two data types. The floating point number’s address is
 assigned to the first pointer. The integer’s pointer is then
 dereferenced to perform the test. This violates the strict aliasing
 rule:
typedef union _conversion2 {
 float *fNum;
 unsigned int *uiNum;
} Conversion2;

int isPositive2(float number) {
 Conversion2 conversion;
 conversion.fNum =&number;
 return (*conversion.uiNum & 0x80000000) == 0;
}
The following function does not use a union and violates the
 strict aliasing rule since the ptrValue pointer shares the same address as
 number:
int isPositive3(float number) {
 unsigned int *ptrValue = (unsigned int *)&number;
 return (*ptrValue & 0x80000000) == 0;
}
The approach used by these functions assumes:
	The IEEE-754 floating point standard is used to represent a
 floating point number

	The floating number is laid out in a particular manner

	Integer and floating point pointers are aligned
 correctly

However, these assumptions are not always valid. While approaches
 such as this can optimize operations, they are not always portable. When
 portability is important, performing a floating point comparison is a
 better approach.

Strict Aliasing

A compiler does not enforce strict aliasing. It will only
 generate warnings. The compiler assumes that two or more pointers of
 different types will never reference the same object. This includes
 pointers to structures with different names but that are otherwise
 identical. With strict aliasing, the compiler is able to perform certain
 optimizations. If the assumption is incorrect, then unexpected results
 may occur.
Even if two structures have the same field but different names,
 two pointers to these structures should never reference the same object.
 In the following example, it is assumed the person and employee pointers will never reference the
 same object:
typedef struct _person {
 char* firstName;
 char* lastName;
 unsigned int age;
} Person;

typedef struct _employee {
 char* firstName;
 char* lastName;
 unsigned int age;
} Employee;

Person* person;
Employee* employee;
However, the pointers can reference the same object if the
 structure definitions differ only by their name, as illustrated
 below:
typedef struct _person {
 char* firstName;
 char* lastName;
 unsigned int age;
} Person;

typedef Person Employee;

Person* person;
Employee* employee;

Using the restrict Keyword

C compilers assume pointers are aliased by default. Using
 the restrict keyword when declaring a
 pointer tells the compiler that the pointer is not aliased. This allows
 the compiler to generate more efficient code. Frequently, this is
 achieved by caching the pointer. Bear in mind that this is only a
 recommendation. The compiler may decide not to optimize the code. If
 aliases are used, then the code’s execution will result in undefined
 behavior. The compiler will not provide any warning when the assumption
 is violated.
Note
New code development should use the restrict keyword with most pointer
 declarations. This will enable better code optimization. Modifying
 existing code may not be worth the effort.

The following function illustrates the definition and use of the
 restrict keyword. The function adds
 two vectors together and stores the result in the first vector:
void add(int size, double * restrict arr1, const double * restrict arr2) {
 for (int i = 0; i < size; i++) {
 arr1[i] += arr2[i];
 }
}
The restrict keyword is used
 with both array parameters, but they should not both reference the same
 block of memory. The following shows the correct usage of the
 function:
 double vector1[] = {1.1, 2.2, 3.3, 4.4};
 double vector2[] = {1.1, 2.2, 3.3, 4.4};

 add(4,vector1,vector2);
In the following sequence, the function is called improperly with
 the same vector being passed as both parameters. The first statement
 uses an alias while the second statement uses the same vector
 twice:
 double vector1[] = {1.1, 2.2, 3.3, 4.4};
 double *vector3 = vector1;

 add(4,vector1,vector3);
 add(4,vector1,vector1);
Though it may sometimes work correctly, the results of the
 function invocation may not be reliable.
Several standard C functions use the restrict keyword, including:
	void *memcpy(void * restrict s1,
 const void * restrict s2, size_t n);

	char *strcpy(char * restrict s1,
 const char * restrict s2);

	char *strncpy(char * restrict s1,
 const char * restrict s2, size_t n);

	int printf(const char * restrict
 format, ...);

	int sprintf(char * restrict s, const
 char * restrict format, ...);

	int snprintf(char * restrict s,
 size_t n, const char * restrict format, ...);

	int scanf(const char * restrict
 format, ...);

The restrict keyword has two
 implications:
	To the compiler it means it can perform certain code
 optimizations

	To the programmer it means these pointers should not be
 aliased; otherwise, the results of the operation are undefined.

Threads and Pointers

When threads share data, numerous problems can occur. One common
 problem is the corruption of data. One thread may write to an object but
 the thread may be suspended momentarily, leaving that object in an
 inconsistent state. Subsequently, a second thread may read that object
 before the first thread is able to resume. The second thread is now using
 an invalid or corrupted object.
Since pointers are a common way of referencing data in another
 thread, we will examine various issues that can adversely affect a
 multithreaded application. As we will see in this section’s examples,
 mutexes are frequently used to protect data.
The C11 standard implements threading, but it is not widely
 supported at this time. There are numerous libraries that support threads
 in C. We will use Portable Operating System
 Interface (POSIX) threads since they are readily available.
 Regardless of the library used, the techniques presented here should be
 applicable.
We will use pointers to support a multithreaded application and
 callbacks. Threads are an involved topic. We assume you are familiar with
 basic thread concepts and terms, and therefore, we will not go into detail
 about how the POSIX thread functions work. The reader is referred to
 O’Reilly’s PThreads Programming
 for a more detailed discussion of this topic.
Sharing Pointers Between Threads

When two or more threads share data, the data can become
 corrupted. To illustrate this problem, we will implement a
 multi-threaded function that computes the dot product of two vectors.
 The multiple threads will simultaneously access two vectors and a sum
 field. When the threads complete, the sum field will hold the dot
 product value.
The dot product of two vectors is computed by summing the product
 of the corresponding elements of each vector. We will use two data
 structures in support of the operation. The first one, VectorInfo, contains information about the two
 vectors being manipulated. It has pointers to the two vectors, the
 sum field to hold the dot product,
 and a length field to specify the
 vector segment’s size used by the dot product function. The length field represents that portion of the
 vector that a thread will process, not the entire length of a
 vector:
typedef struct {
 double *vectorA;
 double *vectorB;
 double sum;
 int length;
} VectorInfo;
The second data structure, Product, contains a pointer to a VectorInfo instance and the beginning index
 the dot Product vector will use. We
 will create a new instance of this structure for each thread with a
 different beginning index:
typedef struct {
 VectorInfo *info;
 int beginningIndex;
} Product;
While each thread will be acting on both vectors at the same time,
 they will be accessing different parts of the vector, so there is no
 conflict there. Each thread will compute a sum for its section of the
 vectors. However, this sum will need to be added to the sum field of the VectorInfo structure. Since multiple threads
 may be accessing the sum field at the
 same time, it is necessary to protect this data using a
 mutex as declared below. A mutex allows only one
 thread to access a protected variable at a time. The following declares
 a mutex to protect the sum variable.
 It is declared at a global level to allow multiple threads to access
 it:
pthread_mutex_t mutexSum;
The dotProduct function is
 shown below. When a thread is created, this function will be called.
 Since we are using POSIX, it is necessary to declare this function as
 returning void and being passed a pointer to void. This pointer passes
 information to the function. We will pass an instance of the Product structure.
Within the function, variables are declared to hold the beginning
 and ending indexes. The for loop performs the actual multiplication and
 keeps a cumulative total in the total
 variable. The last part of the function locks the mutex, adds total to sum, and then unlocks the mutex. While the
 mutext is locked, no other threads can access the sum variable:
void dotProduct(void *prod) {
 Product *product = (Product*)prod;
 VectorInfo *vectorInfo = Product->info;
 int beginningIndex = Product->beginningIndex;
 int endingIndex = beginningIndex + vectorInfo->length;
 double total = 0;

 for (int i = beginningIndex; i < endingIndex; i++) {
 total += (vectorInfo->vectorA[i] * vectorInfo->vectorB[i]);
 }

 pthread_mutex_lock(&mutexSum);
 vectorInfo->sum += total;
 pthread_mutex_unlock(&mutexSum);

 pthread_exit((void*) 0);
}
The code to create the threads is shown below. Two simple vectors
 are declared along with an instance of VectorInfo. Each vector holds 16 elements. The
 length field is set to 4:
#define NUM_THREADS 4

void threadExample() {
 VectorInfo vectorInfo;
 double vectorA[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,
 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0};
 double vectorB[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,
 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0};

 double sum;

 vectorInfo.vectorA = vectorA;
 vectorInfo.vectorB = vectorB;
 vectorInfo.length = 4;
A four-element array of threads is created next, along with code
 to initialize the mutex and an attribute field for the thread:
 pthread_t threads[NUM_THREADS];

 void *status;
 pthread_attr_t attr;

 pthread_mutex_init(&mutexSum, NULL);
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 int returnValue;
 int threadNumber;
With each for loop iteration, a new instance of the Product structure is created. It is assigned
 the address of vectorInfo and a
 unique index based on threadNumber.
 The threads are then created:
 for (threadNumber = 0; threadNumber < NUM_THREADS; threadNumber++) {
 Product *product = (Product*) malloc(sizeof(Product));
 product->beginningIndex = threadNumber * 4;
 product->info = &vectorInfo;
 returnValue = pthread_create(&threads[threadNumber], &attr,
 dotProduct, (void *) (void*) (product));
 if (returnValue) {
 printf("ERROR; Unable to create thread: %d\n", returnValue);
 exit(-1);
 }
 }
After the for loop, the thread attribute and
 mutex variables are destroyed. The for loop ensures
 the program will wait until all four threads have completed. The dot
 product is then displayed. For the above vectors, the product is
 1496:
 pthread_attr_destroy(&attr);

 for (int i = 0; i < NUM_THREADS; i++) {
 pthread_join(threads[i], &status);
 }

 pthread_mutex_destroy(&mutexSum);
 printf("Dot Product sum: %lf\n", vectorInfo.sum);
 pthread_exit(NULL);

}
The sum field is thus
 protected.

Using Function Pointers to Support Callbacks

We previously used a callback function in the sort function
 developed in Chapter 5. Since the
 sort example does not use multiple threads, some programmers do not call
 this a callback function. A more widely accepted definition of a
 callback is when an event in one thread results in the invocation, or
 callback, of a function in another thread. One thread is passed a
 function pointer to a callback function. An event in the function can
 trigger a call to the callback function. This approach is useful in GUI
 applications to handle user thread events.
We will illustrate this approach using a function to compute the
 factorial of a number. The function will callback a second function when
 the factorial has been computed. Information regarding the factorial is
 encapsulated in a FactorialData structure and is passed
 between the functions. This structure and the factorial function are
 shown below. The data consists of the factorial number, the results, and
 a function pointer for the callback. The factorial function uses this data to compute
 the factorial, store the answer in the result field, call the callback function, and
 then terminate the thread:
typedef struct _factorialData {
 int number;
 int result;
 void (*callBack)(struct _factorialData*);
} FactorialData;

void factorial(void *args) {
 FactorialData *factorialData = (FactorialData*) args;
 void (*callBack)(FactorialData*); // Function prototype

 int number = factorialData->number;
 callBack = factorialData->callBack;

 int num = 1;
 for(int i = 1; i<=number; i++) {
 num *= i;
 }

 factorialData->result = num;
 callBack(factorialData);

 pthread_exit(NULL);
}
The thread is created in a startThread function as shown below. The
 thread executes the factorial
 function and passes it factorial data:
void startThread(FactorialData *data) {
 pthread_t thread_id;
 int thread = pthread_create(&thread_id, NULL, factorial, (void *) data);
}
The callback function simply displays the factorial
 results:
void callBackFunction(FactorialData *factorialData) {
 printf("Factorial is %d\n", factorialData->result);
}
The factorial data is initialized and the startThread function is called as shown below.
 The Sleep function provides time for
 all of the threads to terminate properly:
 FactorialData *data =
 (FactorialData*) malloc(sizeof(FactorialData));

 if(!data) {
 printf("Failed to allocate memory\n");
 return;
 }

 data->number = 5;
 data->callBack = callBackFunction;

 startThread(data);

 Sleep(2000);
When this is executed, the output will be as follows:
Factorial is 120
Instead of sleeping, the program can perform other tasks. The
 program does not have to wait for the thread to complete.

Object-Oriented Techniques

C is not known for its support of object-oriented
 programming. However, you can use C to encapsulate data using an opaque
 pointer and to support a certain level of polymorphic behavior. By hiding
 a data structure’s implementation and its supporting functions, the user
 does not need to know how the structure is implemented. Hiding this
 information will reduce what the user needs to know and thus reduce the
 application’s complexity level. In addition, the user will not be tempted
 to take advantage of the structure’s internal details, potentially causing
 later problems if the data structure’s implementation changes.
Polymorphic behavior helps make an application more maintainable. A
 polymorphic function behavior depends on the object it is executing
 against. This means we can add functionality to an application more
 easily.
Creating and Using an Opaque Pointer

An opaque pointer can be used to effect data encapsulation in
 C. One approach declares a structure without any implementation details
 in a header file. Functions are then defined to work with a specific
 implementation of the data structure in an implementation file. A user
 of the data structure will see the declaration and the functions’
 prototypes. However, the implementation is hidden (in the
 .c/.obj file).
Only the information needed to use the data structure is made
 visible to the user. If too much internal information is made available,
 the user may incorporate this information and become dependent on it.
 Should the internal structure change, then it may break the user’s
 code.
We will develop a linked list to demonstrate an opaque pointer.
 The user will use one function to obtain a pointer to a linked list.
 This pointer can then be used to add and remove information from the
 linked list. The details of the linked list’s internal structure and its
 supporting function are not available to the user. The only aspects of
 this structure are provided through a header file, as shown
 below:
//link.h

typedef void *Data;
typedef struct _linkedList LinkedList;

LinkedList* getLinkedListInstance();
void removeLinkedListInstance(LinkedList* list);
void addNode(LinkedList*, Data);
Data removeNode(LinkedList*);
Data is declared as a pointer to void. This allows the
 implementation to handle any type of data. The type definition for
 LinkedList identifies a structure
 called _linkedList. The definition of
 this structure is hidden from the user in its implementation
 file.
Four methods are provided to permit the use of the linked list.
 The user will begin by obtaining a LinkedList’s instance using the getLinkedListInstance function. Once the
 linked list is no longer needed, the removeLinkedListInstance function should be
 called. Passing linked list pointers allows the functions to work with
 one or more linked lists.
To add data to the linked list, the addNode function is used. It is passed the
 linked list to use and a pointer to the data to add to the linked list.
 The removeNode method returns the
 data found at the head of the linked list.
The linked list’s implementation is found in a separate file
 called link.c. The first part of
 the implementation, as shown below, declares variables to hold the
 user’s data and to connect to the next node in the linked list. This is
 followed by the _linkedList
 structure’s definition. In this simple linked list, only a head pointer
 is used:
// link.c

#include <stdlib.h>
#include "link.h"

typedef struct _node {
 Data* data;
 struct _node* next;
} Node;

struct _linkedList {
 Node* head;
};
The second part of the implementation file contains
 implementations of the linked list’s four supporting functions. The
 first function returns an instance of the linked list:
LinkedList* getLinkedListInstance() {
 LinkedList* list = (LinkedList*)malloc(sizeof(LinkedList));
 list->head = NULL;
 return list;
}
The removeLinkedListInstance
 function’s implementation follows. It will free each node in the linked
 list, if any, and then free the list itself. This implementation can
 result in a memory leak if the data referenced by the node contains
 pointers. One solution is to pass a function to deallocate the members
 of the data:
void removeLinkedListInstance(LinkedList* list) {
 Node *tmp = list->head;
 while(tmp != NULL) {
 free(tmp->data); // Potential memory leak!
 Node *current = tmp;
 tmp = tmp->next;
 free(current);
 }
 free(list);
}
The addNode function adds the
 data passed as the second parameter to the linked list specified by the
 first parameter. Memory is allocated for the node, and the user’s data
 is associated with the node. In this implementation, the linked list’s
 nodes are always added to its head:
void addNode(LinkedList* list, Data data) {
 Node *node = (Node*)malloc(sizeof(Node));
 node->data = data;
 if(list->head == NULL) {
 list->head = node;
 node->next = NULL;
 } else {
 node->next = list->head;
 list->head = node;
 }
}
The removeNode function returns
 the data associated with the first node in the linked list. The head
 pointer is adjusted to point to the next node in the linked list. The
 data is returned and the old head node is freed, releasing it back to
 the heap.
Note
This approach eliminates the need for the user to remember to
 free nodes of the linked list, thus avoiding a memory leak. This is a
 significant advantage of hiding implementation details:

Data removeNode(LinkedList* list) {
 if(list->head == NULL) {
 return NULL;
 } else {
 Node* tmp = list->head;
 Data* data;
 list->head = list->head->next;
 data = tmp->data;
 free(tmp);
 return data;
 }
}
To demonstrate the use of this data structure, we will reuse the
 Person structure and its functions
 developed in Introduction. The following
 sequence will add two people to a linked list and then remove them.
 First, the getLinkedListInstance
 function is invoked to obtain a
 linked list. Next, instances of Person are created using the initializePerson function
 and then added to the linked list using the addNode function. The displayPerson function displays the persons
 returned by the removeNode functions.
 The linked list is then freed:
#include "link.h";
...
 LinkedList* list = getLinkedListInstance();

 Person *person = (Person*) malloc(sizeof(Person));
 initializePerson(person, "Peter", "Underwood", "Manager", 36);
 addNode(list, person);
 person = (Person*) malloc(sizeof(Person));
 initializePerson(person, "Sue", "Stevenson", "Developer", 28);
 addNode(list, person);

 person = removeNode(list);
 displayPerson(*person);

 person = removeNode(list);
 displayPerson(*person);

 removeLinkedListInstance(list);
There are a couple of interesting aspects of this approach. We had
 to create an instance of the _linkedList structure in the list.c file. It needs to be created there
 because the sizeof operator cannot be
 used without a complete structure declaration. For example, if we had
 tried to allocate memory for this structure in the main function, as
 follows, we would get a syntax error:
 LinkedList* list = (LinkedList*)malloc(sizeof(LinkedList));
The syntax error generated will be similar to the
 following:
error: invalid application of ‘sizeof’ to incomplete type ‘LinkedList’
The type is incomplete because the compiler has no insight into
 the actual definition as found in the list.c file. All it sees is the _linkedList structure’s type definition. It
 does not see the structure’s implementation details.
The user’s inability to see and potentially use the linked list’s
 internal structure is restricted. Any changes to the structure are
 hidden from the user.
Only the signatures of the four supporting functions are visible
 to the user. Otherwise, the user is unable to use knowledge of their
 implementation or to modify them. The linked list structure and its
 supporting functions are encapsulated, reducing the burden on
 the user.

Polymorphism in C

Polymorphism in an object-oriented language such as C++ is based on
 inheritance between a base and a derived class. Since C does not support
 inheritance we need to simulate inheritance between structures. We will
 define and use two structures to illustrate polymorphic behavior. A
 Shape structure will represent a base
 “class” and a Rectangle structure will be derived from
 the base Shape.
The structure’s variable allocation order has a large impact on
 how this technique works. When an instance of a derived class/structure
 is created, the base class/structure’s variables are allocated first,
 followed by the derived class/structure’s variables. As we will see, we
 also need to account for the functions we plan to override.
Note
Understanding how memory is allocated for objects instantiated
 from a class is key to understanding how inheritance and polymorphism
 work in an object-oriented language. The same is true when we use this
 technique in C.

Let’s start with the Shape
 structure’s definition as shown below. First, we allocate a structure to
 hold the function pointers for the structure. Next, integers are
 declared for an x and a y position:
typedef struct _shape {
 vFunctions functions;
 // Base variables
 int x;
 int y;
} Shape;
The vFunction structure and its
 supporting declarations are defined below. When a function is executed
 against a class/structure, its behavior will depend on what it is
 executing against. For example, when a display function is executed
 against a Shape, then a Shape should be displayed. When it is executed
 against a Rectangle, then a Rectangle should be displayed. In an
 object-oriented programming language this is typically achieved using a
 Virtual Table or VTable. The vFunction structure is intended to serve in
 this capacity:
typedef void (*fptrSet)(void*,int);
typedef int (*fptrGet)(void*);
typedef void (*fptrDisplay)();

typedef struct _functions {
 // Functions
 fptrSet setX;
 fptrGet getX;
 fptrSet setY;
 fptrGet getY;
 fptrDisplay display;
} vFunctions;
This structure consists of a series of function pointers. The
 fptrSet and fptrGet function pointers define the typical
 getter and setter functions for integer type data. In this case, they
 are used for getting and setting the x and y
 values for a Shape or Rectangle. The fptrDisplay function pointer defines a
 function that is passed void and
 returns void. We will use the display
 function to illustrate polymorphic behavior.
The Shape structure has four
 functions designed to work with it, as shown below. Their
 implementations are straightforward. To keep this example simple, in the
 display function, we simply print out
 the string “Shape.” We pass the Shape
 instance to these functions as the first argument. This allows these
 functions to work with more than one instance of a Shape:
void shapeDisplay(Shape *shape) { printf("Shape\n");}
void shapeSetX(Shape *shape, int x) {shape->x = x;}
void shapeSetY(Shape *shape, int y) {shape->y = y;}
int shapeGetX(Shape *shape) { return shape->x;}
int shapeGetY(Shape *shape) { return shape->y;}
To assist in the creation of a Shape instance, we have provided a getShapeInstance function. It allocates memory
 for the object and the object’s functions are assigned:
Shape* getShapeInstance() {
 Shape *shape = (Shape*)malloc(sizeof(Shape));
 shape->functions.display = shapeDisplay;
 shape->functions.setX = shapeSetX;
 shape->functions.getX = shapeGetX;
 shape->functions.setY = shapeSetY;
 shape->functions.getY = shapeGetY;
 shape->x = 100;
 shape->y = 100;
 return shape;
}
The following sequence demonstrates these functions:
 Shape *sptr = getShapeInstance();
 sptr->functions.setX(sptr,35);
 sptr->functions.display();
 printf("%d\n", sptr->functions.getX(sptr));
The output of this sequence is:
Shape
35
This may seem to be a lot of effort just to work with a Shape structure. We can see the real power of
 this approach once we create a structure derived from Shape: Rectangle. This structure is shown
 below:
typedef struct _rectangle {
 Shape base;
 int width;
 int height;
} Rectangle;
The memory allocated for the Rectangle structure’s first field is the same
 as the memory allocated for a Shape
 structure. This is illustrated in Figure 8-5. In addition, we
 have added two new fields, width and
 height, to represent a rectangle’s
 characteristics.
[image: Memory allocation for shape and rectangle]

Figure 8-5. Memory allocation for shape and rectangle

Rectangle, like Shape, needs some functions associated with
 it. These are declared below. They are similar to those associated with
 the Shape structure, except that they
 use the Rectangle’s base
 field:
void rectangleSetX(Rectangle *rectangle, int x) {
 rectangle->base.x = x;
}

void rectangleSetY(Rectangle *rectangle, int y) {
 rectangle->base.y;
}

int rectangleGetX(Rectangle *rectangle) {
 return rectangle->base.x;
}

int rectangleGetY(Rectangle *rectangle) {
 return rectangle->base.y;
}

void rectangleDisplay() {
 printf("Rectangle\n");
}
The getRectangleInstance
 function returns an instance of a Rectangle structure as follows:
Rectangle* getRectangleInstance() {
 Rectangle *rectangle = (Rectangle*)malloc(sizeof(Rectangle));
 rectangle->base.functions.display = rectangleDisplay;
 rectangle->base.functions.setX = rectangleSetX;
 rectangle->base.functions.getX = rectangleGetX;
 rectangle->base.functions.setY = rectangleSetY;
 rectangle->base.functions.getY = rectangleGetY;
 rectangle->base.x = 200;
 rectangle->base.y = 200;
 rectangle->height = 300;
 rectangle->width = 500;
 return rectangle;
}
The following illustrates the use of this structure:
 Rectangle *rptr = getRectangleInstance();
 rptr->base.functions.setX(rptr,35);
 rptr->base.functions.display();
 printf("%d\n", rptr->base.functions.getX(rptr));
The output of this sequence is:
Rectangle
35
Now let’s create an array of Shape pointers and initialize them as follows.
 When we assign a Rectangle to
 shapes[1], we do not have to cast it
 as a (Shape*). However, we will get a
 warning if we don’t:
 Shape *shapes[3];
 shapes[0] = getShapeInstance();
 shapes[0]->functions.setX(shapes[0],35);
 shapes[1] = getRectangleInstance();
 shapes[1]->functions.setX(shapes[1],45);
 shapes[2] = getShapeInstance();
 shapes[2]->functions.setX(shapes[2],55);

 for(int i=0; i<3; i++) {
 shapes[i]->functions.display();
 printf("%d\n", shapes[i]->functions.getX(shapes[i]));
 }
When this sequence is executed, we get the following
 output:
Shape
35
Rectangle
45
Shape
55
While we created an array of Shape pointers, we created a Rectangle and assigned it to the array’s
 second element. When we displayed the element in the for loop, it used
 the Rectangle’s function behavior and
 not the Shape’s. This is an example
 of polymorphic behavior. The display
 function depends on the structure it is executing against.
Since we are accessing it as a Shape, we should not try to access its width
 or height using shapes[i] since the
 element may or may not reference a Rectangle. If we did, then we could be
 accessing memory in other shapes that do not represent width or height
 information, yielding unpredictable results.
We can now add a second structure derived from Shape, such as a Circle, and then add it to the array without
 extensive modification of the code. We also need to create functions for
 the structure.
If we added another function to the base structure Shape, such as getArea, we could implement a unique getArea function for each class. Within a
 loop, we could easily add up the sum of all of the Shape and Shape-derived structures without having to
 first determine what type of Shape we
 are working with. If the Shape’s
 implementation of getArea is
 sufficient, then we do not need to add one for the other structures.This
 makes it easy to maintain and expand an application.

Summary

In this chapter, we have explored several aspects of pointers. We
 started with a discussion of casting pointers. Examples illustrated how to
 use pointers to access memory and hardware ports. We also saw how pointers
 are used to determine the endianness of a machine.
Aliasing and the restrict keyword
 were introduced. Aliasing occurs when two pointers reference the same
 object. Compilers will assume that pointers may be aliased. However, this
 can result in inefficient code generation. The restrict keyword allows the compiler to perform
 better optimization.
We saw how pointers can be used with threads and learned about the
 need to protect data shared through pointers. In addition, we examined
 techniques to effect callbacks between threads using function
 pointers.
In the last section, we examined opaque pointers and polymorphic
 behavior. Opaque pointers enable C to hide data from a user. Polymorphism
 can be incorporated into a program to make it more maintainable.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	& (ampersand), address of
 operator, Address of Operator, Pointer Notation and Arrays
	
	* (asterisk)
		indirection (dereference) operator, Dereferencing a Pointer Using the Indirection Operator, Pointer Operators, Dynamic Memory Allocation, Misuse of the Dereference Operator–Misuse of the Dereference Operator
	
	in pointer
 declaration, Declaring Pointers, Pointer Operators, Misuse of the Dereference Operator–Misuse of the Dereference Operator
	

	{} (braces), in array
 initialization, One-Dimensional Arrays, Two-Dimensional Arrays, Multidimensional Arrays
	
	[] (brackets), in array
 declarations, One-Dimensional Arrays, Two-Dimensional Arrays, Multidimensional Arrays
	
	“ ” (double quotes), enclosing
 string literals, String Declaration
	
	= (equal sign)
		assignment operator, Using malloc with static and global pointers
	
	initialization operator, Using malloc with static and global pointers
	

	== (equal sign, double),
 equality operator, Pointer Operators
	
	!= (exclamation
 point, equal sign), inequality operator, Pointer Operators
	
	< (left angle
 bracket), less than operator, Pointer Operators
	
	<= (left angle
 bracket, equal sign), less than or equal operator, Pointer Operators
	
	- (minus sign), subtraction
 operator, Pointer Operators
	
	-> (minus sign, right
 angle bracket), points-to operator, Pointer Operators, Introduction
	
	() (parentheses)
		enclosing data type to cast, Pointer Operators
	
	in pointer to function
 declarations, Pointers to Functions, Declaring Function Pointers
	

	+ (plus sign), addition
 operator, Pointer Operators
	
	> (right angle
 bracket), greater than operator, Pointer Operators
	
	>= (right
 angle bracket, equal sign), greater than or equal
 operator, Pointer Operators
	
	' ' (single quotes), enclosing
 character literals, String Fundamentals
	
	0 (zero)
		assigned to pointers, The Concept of Null, To NULL or not to NULL
	
	as overloaded, To NULL or not to NULL
	

A
	activation records or frames (see stack frames)
	
	addition operator (+), Pointer Operators
	
	address of operator (&), Address of Operator, Pointer Notation and Arrays
	
	Address Space Layout Randomization (ASLR), Security Issues and the Improper Use of Pointers
	
	aliasing, Dangling Pointer Examples, Copying Strings, Aliasing, Strict Aliasing, and the restrict Keyword–Using the restrict Keyword
	
	alloca function, The alloca Function and Variable Length Arrays
	
	ampersand (&), address of operator, Address of Operator, Pointer Notation and Arrays
	
	arithmetic operators, Pointer Operators, Pointer Arithmetic–Subtracting two pointers
	
	arrays, Pointers and Arrays–Multidimensional Arrays
		accessing memory outside of, Accessing Memory Outside the Bounds of an Array–Accessing Memory Outside the Bounds of an Array
	
	array notation for, Pointer Notation and Arrays–Pointer Notation and Arrays, Using malloc to Create a One-Dimensional Array, Using Array Notation–Using Pointer Notation, Pointers and Multidimensional Arrays, Passing a Multidimensional Array
	
	of characters, strings declared
 as, String Declaration
	
	compared to pointers, Pointers and Arrays, Quick Review of Arrays
	
	compared to pointers to arrays, Differences Between Arrays and Pointers
	
	declaration of, One-Dimensional Arrays–Multidimensional Arrays
	
	of function
 pointers, Using an Array of Function Pointers–Using an Array of Function Pointers
	
	initialization of, One-Dimensional Arrays, Two-Dimensional Arrays, Multidimensional Arrays
	
	jagged, Jagged Arrays and Pointers–Jagged Arrays and Pointers
	
	multidimensional, Multidimensional Arrays
		passing to functions, Passing a Multidimensional Array–Passing a Multidimensional Array
	
	pointers to, Pointers and Multidimensional Arrays–Pointers and Multidimensional Arrays
	

	one-dimensional, One-Dimensional Arrays–One-Dimensional Arrays, Using malloc to Create a One-Dimensional Array, Using a One-Dimensional Array of Pointers–Using a One-Dimensional Array of Pointers
	
	passing to functions, Passing a One-Dimensional Array–Using Pointer Notation
	
	pointer notation for, Pointer Notation and Arrays–Pointer Notation and Arrays, Using malloc to Create a One-Dimensional Array, Using Pointer Notation–Using Pointer Notation, Using a One-Dimensional Array of Pointers, Pointers and Multidimensional Arrays, Passing a Multidimensional Array
	
	of pointers, Using a One-Dimensional Array of Pointers–Using a One-Dimensional Array of Pointers
	
	pointers to, Pointer Notation and Arrays–Differences Between Arrays and Pointers
	
	using pointers as, Using malloc to Create a One-Dimensional Array, Dynamically Allocating a Two-Dimensional Array–Jagged Arrays and Pointers
	
	resizing, Using the realloc Function to Resize an Array–Using the realloc Function to Resize an Array
	
	size of, Quick Review of Arrays, One-Dimensional Arrays, Two-Dimensional Arrays, Differences Between Arrays and Pointers, Calculating the Array Size Incorrectly–Calculating the Array Size Incorrectly
	
	sorting, Function Pointers and Strings–Function Pointers and Strings
	
	two-dimensional, Two-Dimensional Arrays–Two-Dimensional Arrays, Dynamically Allocating a Two-Dimensional Array–Allocating Contiguous Memory
	
	VLA (Variable Length Array), The alloca Function and Variable Length Arrays–The alloca Function and Variable Length Arrays
	

	ASLR (Address Space Layout Randomization), Security Issues and the Improper Use of Pointers
	
	assert function, Dealing with Uninitialized Pointers
	
	assert.h file, Dealing with Uninitialized Pointers
	
	assignment operator (=), Using malloc with static and global pointers
	
	asterisk (*)
		indirection (dereference) operator, Dereferencing a Pointer Using the Indirection Operator, Pointer Operators, Dynamic Memory Allocation, Misuse of the Dereference Operator–Misuse of the Dereference Operator
	
	in pointer
 declaration, Declaring Pointers, Pointer Operators, Misuse of the Dereference Operator–Misuse of the Dereference Operator
	

	automatic memory, Pointers and Memory
	
	automatic variables (see local variables)
	

B
	block statements, stack used by, Organization of a Stack Frame
	
	Bounded Model Checking application, Bounded Pointers
	
	bounded pointers, Bounded Pointers
	
	braces ({}), in array initialization, One-Dimensional Arrays, Two-Dimensional Arrays, Multidimensional Arrays
	
	brackets ([]), in array declarations, One-Dimensional Arrays, Two-Dimensional Arrays, Multidimensional Arrays
	
	buffer overflow, Pointer Usage Issues
		array misuse causing, Accessing Memory Outside the Bounds of an Array–Calculating the Array Size Incorrectly
	
	dangling pointers causing, Dangling Pointers
	
	dereference operator misuse causing, Misuse of the Dereference Operator–Misuse of the Dereference Operator
	
	function pointer misuse causing, Function Pointer Issues–Function Pointer Issues
	
	malloc failure causing, Test for NULL
	
	pointer arithmetic on structures causing, Pointer Arithmetic and Structures–Pointer Arithmetic and Structures
	
	pointer type mismatch causing, Always Match Pointer Types–Always Match Pointer Types
	
	sizeof operator misuse causing, Misusing the sizeof Operator
	
	string misuse causing, String Security Issues–String Security Issues
	

	byte strings, String Fundamentals
	

C
	C data types
		char data type, String Fundamentals
	
	intptr_t type, Using intptr_t and uintptr_t–Using intptr_t and uintptr_t
	
	memory models for, Memory Models
	
	size_t type, Understanding size_t–Understanding size_t
	
	uintptr_t type, Using intptr_t and uintptr_t–Using intptr_t and uintptr_t
	
	union of, Aliasing, Strict Aliasing, and the restrict Keyword, Using a Union to Represent a Value in Multiple Ways–Using a Union to Represent a Value in Multiple Ways
	
	wchar_t data type, String Fundamentals
	

	C specification, pointer behavior not defined in, Why You Should Become Proficient with Pointers
	
	callback functions, Odds and Ends, Accessing Memory using DMA, Using Function Pointers to Support Callbacks–Using Function Pointers to Support Callbacks
	
	calloc function, Dynamic Memory Allocation Functions, Using the calloc Function–Using the calloc Function
	
	casting, Pointer Operators, Casting Pointers–Casting Pointers
		endianness, determining, Determining the Endianness of a Machine
	
	function pointers, Casting Function Pointers–Casting Function Pointers
	
	integer to pointer to an integer, Address of Operator
	
	with malloc
 function, To cast or not to cast
	
	pointer to an integer, Using intptr_t and uintptr_t
	
	ports, accessing, Accessing a Port–Accessing a Port
	
	special purpose addresses, accessing, Accessing a Special Purpose Address–Accessing a Special Purpose Address
	

	CERT organization, Security Issues and the Improper Use of Pointers
	
	cfree function, Using the calloc Function
	
	char data type, String Fundamentals
	
	character literals, String Fundamentals, Initializing a pointer to a char
	
	characters
		array of, strings declared as, String Declaration
	
	pointers to, String Declaration, Aliasing, Strict Aliasing, and the restrict Keyword
	

	code examples, permission to use, Using Code Examples
	
	command-line arguments, Passing Arguments to an Application–Passing Arguments to an Application
	
	compact expressions, Why You Should Become Proficient with Pointers
	
	comparison operators, Pointer Operators, Comparing Pointers–Comparing Pointers, Comparing Function Pointers–Comparing Function Pointers
	
	compilers, Preface
		(see also specific compilers)
	
	problems detected by, Using Static Analysis Tools–Using Static Analysis Tools
	

	compound literals, arrays using, Jagged Arrays and Pointers–Jagged Arrays and Pointers
	
	constant pointers
		assigning NULL to, Assigning NULL to a Freed Pointer
	
	to constants, Constant pointers to constants–Constant pointers to constants
	
	to nonconstants, Constant pointers to nonconstants–Constant pointers to nonconstants
	
	pointers to, Pointer to (constant pointer to constant)
	

	constants
		declaring string literals as, When a string literal is not a constant
	
	pointers to, Pointers to a constant–Pointers to a constant, Passing a Pointer to a Constant–Passing a Pointer to a Constant
	

	contact information for this book, How to Contact Us
	
	conventions used in this book, Conventions Used in This Book
	

D
	dangling pointers, Assigning NULL to a Freed Pointer, Dangling Pointers–Debug Version Support for Detecting Memory Leaks, Dangling Pointers
	
	data corruption
		returning pointers to local data causing, Pointers to Local Data
	
	writing outside of memory block causing, Dynamic Memory Allocation
	

	Data Execution Prevention (DEP), Security Issues and the Improper Use of Pointers
	
	data types (see C data types)
	
	declaration of arrays, One-Dimensional Arrays–Multidimensional Arrays
	
	declaration of pointers, Declaring Pointers–How to Read a Declaration
		to functions, Pointers to Functions, Declaring Function Pointers–Declaring Function Pointers
	
	improper, Improper Pointer Declaration–Improper Pointer Declaration
	
	reading, How to Read a Declaration
	

	declaration of strings, String Declaration–String Declaration
	
	declaration of structures, Introduction–Introduction
	
	#define directive, Improper Pointer Declaration
	
	denial of service attack, Pointer Usage Issues, Double Free
	
	DEP (Data Execution Prevention), Security Issues and the Improper Use of Pointers
	
	dereferencing pointers, Dereferencing a Pointer Using the Indirection Operator
		errors involving, Dynamic Memory Allocation, Misuse of the Dereference Operator–Misuse of the Dereference Operator
	
	multiple levels of indirection, Multiple Levels of Indirection–Multiple Levels of Indirection, Pointer to (constant pointer to constant)
	
	null pointers, The Concept of Null
	

	DMA (Direct Memory Access), Accessing Memory using DMA
	
	dot notation, Introduction
	
	double free, Double Free–Double Free, Double Free
	
	double pointers (see multiple levels of indirection)
	
	double quotes (“ ”), enclosing string literals, String Declaration
	
	dynamic memory, Pointers and Memory, Dynamic Memory Management in C–Dynamic Memory Management in C
		allocating, Why You Should Become Proficient with Pointers, Dynamic Memory Allocation–Dynamic Memory Allocation, Dynamic Memory Allocation Functions–The alloca Function and Variable Length Arrays
		amount allocated, Determining the amount of memory allocated
	
	for arrays, Using malloc to Create a One-Dimensional Array, Dynamically Allocating a Two-Dimensional Array–Allocating Contiguous Memory
	
	checking return value of, Test for NULL
	
	failure to, Failing to allocate memory
	
	in a function, Returning a Pointer–Returning a Pointer
	

	deallocating, Why You Should Become Proficient with Pointers, Dynamic Memory Allocation, Dynamic Memory Allocation, Using the calloc Function, Deallocating Memory Using the free Function–Freeing Memory upon Program Termination
		after returning from a function, Returning a Pointer
	
	at application
 termination, Freeing Memory upon Program Termination
	
	assigning NULL after, Assigning NULL to a Freed Pointer, Double Free
	
	availability to application, The Heap and System Memory
	
	clearing sensitive data when, Clearing Sensitive Data
	
	exception handling for, Using Exception Handlers
	
	failure to, hidden memory leaks from, Hidden memory leaks
	
	garbage collection for, Garbage Collection in C
	
	RAII for, Resource Acquisition Is Initialization–Resource Acquisition Is Initialization
	
	referencing pointer following (see dangling pointers)
	
	twice, Double Free–Double Free, Double Free
	
	writing your own function for, Writing your own free function–Writing your own free function
	

	managing your own pool of, Avoiding malloc/free Overhead–Avoiding malloc/free Overhead
	

E
	endianness, Casting Pointers, Determining the Endianness of a Machine
	
	equal sign (=)
		assignment operator, Using malloc with static and global pointers
	
	initialization operator, Using malloc with static and global pointers
	

	equal sign, double (==), equality operator, Pointer Operators
	
	exception handling, Using Exception Handlers
	
	exclamation point, equal sign (!=), inequality
 operator, Pointer Operators
	

F
	far pointers, Using intptr_t and uintptr_t
	
	fonts used in this book, Conventions Used in This Book
	
	format string attack, String Security Issues
	
	fprintf function, String Security Issues
	
	free function, Why You Should Become Proficient with Pointers, Dynamic Memory Allocation, Dynamic Memory Allocation, Dynamic Memory Allocation Functions, Deallocating Memory Using the free Function–Deallocating Memory Using the free Function
		at application
 termination, Freeing Memory upon Program Termination
	
	assigning NULL after, Assigning NULL to a Freed Pointer, Double Free
	
	clearing sensitive data when, Clearing Sensitive Data
	
	not used, hidden memory leaks from, Hidden memory leaks
	
	overhead incurred by, Avoiding malloc/free Overhead–Avoiding malloc/free Overhead
	
	referencing pointer following (see dangling pointers)
	
	used twice (double free), Double Free–Double Free, Double Free
	
	writing your own, Writing your own free function–Writing your own free function
	

	function pointers, Function Pointers–Casting Function Pointers
		array of, Using an Array of Function Pointers–Using an Array of Function Pointers
	
	calling, Using a Function Pointer–Using a Function Pointer
	
	casting, Casting Function Pointers–Casting Function Pointers
	
	comparing, Comparing Function Pointers–Comparing Function Pointers
	
	declaration of, Pointers to Functions, Declaring Function Pointers–Declaring Function Pointers
	
	improper use of, Function Pointer Issues–Function Pointer Issues
	
	passing as parameters, Passing Function Pointers–Passing Function Pointers, Function Pointers and Strings–Function Pointers and Strings
	
	performance of, Function Pointers
	
	returning from a function, Returning Function Pointers
	

	functions, Preface
		(see also specific functions)
	
	callback functions, Odds and Ends, Accessing Memory using DMA, Using Function Pointers to Support Callbacks–Using Function Pointers to Support Callbacks
	
	parameters of (see parameters)
	
	returning function pointers from, Returning Function Pointers
	
	returning pointers from, Returning a Pointer–Pointers to Local Data
	
	returning strings from, Returning Strings–Returning the address of a local string
	
	stack used by, Pointers and Functions–Organization of a Stack Frame
	

G
	garbage collection, Garbage Collection in C
	
	GCC compiler
		memory leak detection, Debug Version Support for Detecting Memory Leaks
	
	modification of string literals, When a string literal is not a constant
	
	string pooling turned off for, The String Literal Pool
	
	-Wall option, reporting compiler
 warnings, Using Static Analysis Tools
	

	gets function, String Security Issues
	
	global memory, Pointers and Memory
	
	global pointers, Global and static pointers, Using malloc with static and global pointers
	
	global variables, Dynamic Memory Management in C, Using malloc with static and global pointers
	
	GNU compiler
		dlmalloc, Dynamic Memory Allocation Technologies
	
	RAII support, Resource Acquisition Is Initialization–Resource Acquisition Is Initialization
	

	greater than operator (>), Pointer Operators
	
	greater than or equal operator (>=), Pointer Operators
	

H
	handles, compared to pointers, Casting Pointers
	
	heap, Program Stack–Program Stack
		corruption of
		double free causing, Double Free
	
	writing outside of memory block causing, Dynamic Memory Allocation
	

	detecting problems with, Debug Version Support for Detecting Memory Leaks
	
	dynamic memory allocated from (see dynamic memory)
	

	heap managers, Dynamic Memory Allocation Technologies–Using Exception Handlers
	
	hidden memory leaks, Hidden memory leaks
	
	Hoard malloc, Dynamic Memory Allocation Technologies
	
	huge pointers, Using intptr_t and uintptr_t
	
	hyphen (-) (see minus sign (-))
	

I
	indirection (dereference) operator (*), Preface, Dereferencing a Pointer Using the Indirection Operator, Pointer Operators, Dynamic Memory Allocation, Misuse of the Dereference Operator–Misuse of the Dereference Operator
		(see also dereferencing)
	

	inequality operator (!=), Pointer Operators
	
	inheritance, Polymorphism in C–Polymorphism in C
	
	initialization of pointers, Address of Operator–Address of Operator
		failure to, Failure to Initialize a Pointer Before It Is Used–Dealing with Uninitialized Pointers, Using Static Analysis Tools
	
	to NULL, Dealing with Uninitialized Pointers
	

	initialization operator (=), Using malloc with static and global pointers
	
	integers, casting to a pointer to an integer, Address of Operator
	
	intptr_t type, Using intptr_t and uintptr_t–Using intptr_t and uintptr_t
	

J
	jagged arrays, Jagged Arrays and Pointers–Jagged Arrays and Pointers
	

L
	left angle bracket (<), less than
 operator, Pointer Operators
	
	left angle bracket, equal sign (<=), less than or
 equal operator, Pointer Operators
	
	less than operator (<), Pointer Operators
	
	less than or equal operator (<=), Pointer Operators
	
	linked lists, Single-Linked List–Single-Linked List
		implementing as arrays, Why You Should Become Proficient with Pointers
	
	implementing as pointers, Why You Should Become Proficient with Pointers
	

	local variables
		returning pointers to, Pointers to Local Data–Pointers to Local Data
	
	stack used by, Dynamic Memory Management in C, Program Stack, Organization of a Stack Frame, Organization of a Stack Frame
	

	lvalue, required to be modifiable, Dereferencing a Pointer Using the Indirection Operator, Differences Between Arrays and Pointers
	

M
	macro definitions, declaring pointers using, Improper Pointer Declaration
	
	malloc function, Why You Should Become Proficient with Pointers, Dynamic Memory Allocation–Dynamic Memory Allocation, Dynamic Memory Allocation Functions–Using malloc with static and global pointers
		checking return value of, Test for NULL
	
	creating arrays using, Using malloc to Create a One-Dimensional Array, Dynamically Allocating a Two-Dimensional Array–Allocating Contiguous Memory
	
	implementations of, Dynamic Memory Allocation Technologies
	
	initializing strings using, Initializing a pointer to a char
	
	overhead incurred by, Avoiding malloc/free Overhead–Avoiding malloc/free Overhead
	
	for returning a pointer from a
 function, Returning a Pointer–Returning a Pointer
	

	malloca function, The alloca Function and Variable Length Arrays
	
	memory
		automatic memory, Pointers and Memory
	
	dynamic memory (see dynamic memory)
	
	global memory, Pointers and Memory
	
	heap (see heap)
	
	lifetime of, Pointers and Memory
	
	scope of, Pointers and Memory
	
	special purpose addresses, accessing, Accessing a Special Purpose Address–Accessing a Special Purpose Address
	
	stack (see stack)
	
	static memory, Pointers and Memory
	
	types of, Pointers and Memory
	
	virtual memory addresses, Virtual memory and pointers
	

	memory leaks, Memory Leaks–Hidden memory leaks
		detecting, Debug Version Support for Detecting Memory Leaks
	
	failure to deallocate returned pointers
 causing, Returning a Pointer
	
	hidden, Hidden memory leaks
	
	lost address causing, Losing the address
	
	structure pointers not deallocated causing, Structure Deallocation Issues
	

	memory models, for C data types, Memory Models
	
	memset function, Using the calloc Function, Accessing a Special Purpose Address
	
	Microsoft compiler
		exception handling, Using Exception Handlers
	
	malloca function, The alloca Function and Variable Length Arrays
	
	memory management, Debug Version Support for Detecting Memory Leaks
	

	minus sign (-), subtraction operator, Pointer Operators
	
	minus sign, right angle bracket (->), points-to
 operator, Pointer Operators, Introduction
	
	Mudflap Libraries, Debug Version Support for Detecting Memory Leaks
	
	multiple levels of indirection, Multiple Levels of Indirection–Multiple Levels of Indirection, Pointer to (constant pointer to constant)
	

N
	near pointers, Using intptr_t and uintptr_t
	
	NUL ASCII character, The Concept of Null, To NULL or not to NULL, String Fundamentals
	
	NULL
		assigning to constant pointers, Assigning NULL to a Freed Pointer
	
	assigning to freed pointer, Assigning NULL to a Freed Pointer
	
	initializing pointers with, Dealing with Uninitialized Pointers
	

	NULL macro, The Concept of Null
	
	null pointers, The Concept of Null–To NULL or not to NULL, Passing Null Pointers
	

O
	%o field specifier, printf
 function, Displaying Pointer Values
	
	object-oriented type support, Odds and Ends, Object-Oriented Techniques–Polymorphism in C
		opaque pointers for, Creating and Using an Opaque Pointer–Creating and Using an Opaque Pointer
	
	polymorphism and inheritance, Polymorphism in C–Polymorphism in C
	

	opaque pointers, Creating and Using an Opaque Pointer–Creating and Using an Opaque Pointer
	
	OpenBSD malloc, Dynamic Memory Allocation Technologies
	
	operators, Pointer Operators–Comparing Pointers
		arithmetic operators, Pointer Operators, Pointer Arithmetic–Subtracting two pointers
	
	comparison operators, Pointer Operators, Comparing Pointers–Comparing Pointers
	
	list of, Pointer Operators
	

	overloading of zero (0), To NULL or not to NULL
	

P
	%p field specifier, printf
 function, Displaying Pointer Values–Displaying Pointer Values
	
	parameters
		passed by pointer, Passing and Returning by Pointer–Passing Data Using a Pointer
	
	passed by value, Passing and Returning by Pointer, Passing Data by Value
	
	passing a pointer to a pointer as, Passing a Pointer to a Pointer–Writing your own free function
	
	passing arrays as, Passing a One-Dimensional Array–Using Pointer Notation
	
	passing function pointers as, Passing Function Pointers–Passing Function Pointers
	
	passing multidimensional arrays as, Passing a Multidimensional Array–Passing a Multidimensional Array
	
	passing null pointers to, Passing Null Pointers
	
	passing pointers to constants as, Passing a Pointer to a Constant–Passing a Pointer to a Constant
	
	passing strings as, Pointers and Strings, Passing Strings–Passing a String to Be Initialized
	
	stack used by, Organization of a Stack Frame, Organization of a Stack Frame
	

	parentheses (())
		enclosing data type to cast, Pointer Operators
	
	in pointer to function
 declarations, Pointers to Functions, Declaring Function Pointers
	

	plus sign (+), addition operator, Pointer Operators
	
	pointer arithmetic, Pointer Arithmetic
		with arrays, Pointer Notation and Arrays
	
	not using with structures, Pointer Arithmetic and Structures–Pointer Arithmetic and Structures
	
	on pointers to
 void, Pointers to void and addition
	

	pointers, Introduction–Pointers and Memory
		aliasing, Dangling Pointer Examples, Copying Strings, Aliasing, Strict Aliasing, and the restrict Keyword–Using the restrict Keyword
	
	arrays of, Using a One-Dimensional Array of Pointers–Using a One-Dimensional Array of Pointers
	
	to arrays, Pointer Notation and Arrays–Differences Between Arrays and Pointers
	
	using as arrays, Using malloc to Create a One-Dimensional Array, Dynamically Allocating a Two-Dimensional Array–Jagged Arrays and Pointers
	
	benefits of, Why You Should Become Proficient with Pointers–Why You Should Become Proficient with Pointers
	
	bounded pointers, Bounded Pointers
	
	to characters, String Declaration, Aliasing, Strict Aliasing, and the restrict Keyword
	
	compared to arrays, Pointers and Arrays, Quick Review of Arrays
	
	compared to handles, Casting Pointers
	
	to constant char, passing strings
 as, Passing a Pointer to a Constant char
	
	constant pointers
		assigning NULL to, Assigning NULL to a Freed Pointer
	
	to constants, Constant pointers to constants–Constant pointers to constants
	
	to nonconstants, Constant pointers to nonconstants–Constant pointers to nonconstants
	

	to constant
 pointers, Pointer to (constant pointer to constant)
	
	to constants, Pointers to a constant–Pointers to a constant, Passing a Pointer to a Constant–Passing a Pointer to a Constant
	
	dangling pointers, Assigning NULL to a Freed Pointer, Dangling Pointers–Debug Version Support for Detecting Memory Leaks, Dangling Pointers
	
	data types for, Predefined Pointer-Related Types–Using intptr_t and uintptr_t
	
	declaration of, Declaring Pointers–How to Read a Declaration
		improper, Improper Pointer Declaration–Improper Pointer Declaration
	
	reading, How to Read a Declaration
	

	dereferencing, Dereferencing a Pointer Using the Indirection Operator
		errors involving, Dynamic Memory Allocation, Misuse of the Dereference Operator–Misuse of the Dereference Operator
	
	multiple levels of indirection, Multiple Levels of Indirection–Multiple Levels of Indirection, Pointer to (constant pointer to constant)
	
	null pointers, The Concept of Null
	

	to functions, Function Pointers–Casting Function Pointers
		arrays of, Using an Array of Function Pointers–Using an Array of Function Pointers
	
	calling, Using a Function Pointer–Using a Function Pointer
	
	casting, Casting Function Pointers–Casting Function Pointers
	
	comparing, Comparing Function Pointers–Comparing Function Pointers
	
	declaration of, Pointers to Functions, Declaring Function Pointers–Declaring Function Pointers
	
	improper use of, Function Pointer Issues–Function Pointer Issues
	
	passing as parameters, Passing Function Pointers–Passing Function Pointers, Function Pointers and Strings–Function Pointers and Strings
	
	performance of, Function Pointers
	
	returning from a function, Returning Function Pointers
	

	global pointers, Global and static pointers, Using malloc with static and global pointers
	
	improper use of, detecting, Using Static Analysis Tools–Using Static Analysis Tools
	
	initialization of, Address of Operator–Address of Operator
		failure to, Failure to Initialize a Pointer Before It Is Used–Dealing with Uninitialized Pointers, Using Static Analysis Tools
	
	to NULL, Dealing with Uninitialized Pointers
	

	memory for (see dynamic memory)
	
	to multidimensional
 arrays, Pointers and Multidimensional Arrays–Pointers and Multidimensional Arrays
	
	null pointers, The Concept of Null–To NULL or not to NULL, Passing Null Pointers
	
	opaque pointers, Creating and Using an Opaque Pointer–Creating and Using an Opaque Pointer
	
	operators for, Pointer Operators–Comparing Pointers
	
	parameters passed by, Passing and Returning by Pointer–Passing Data Using a Pointer
	
	to pointers, passing as
 parameters, Passing a Pointer to a Pointer–Writing your own free function
	
	potential problems with, Why You Should Become Proficient with Pointers–Why You Should Become Proficient with Pointers
	
	returning from functions, Returning a Pointer–Pointers to Local Data
	
	size of, Pointer Size and Types–Using intptr_t and uintptr_t
	
	smart pointers, Bounded Pointers
	
	static pointers, Global and static pointers, Using malloc with static and global pointers
	
	structures implemented using, Using Pointers to Support Data Structures–Using Pointers to Support Data Structures
		linked lists, Single-Linked List–Single-Linked List
	
	queues, Using Pointers to Support a Queue–Using Pointers to Support a Queue
	
	stacks, Using Pointers to Support a Stack–Using Pointers to Support a Stack
	
	trees, Using Pointers to Support a Tree–Using Pointers to Support a Tree
	

	to structures, declaration of, Introduction
	
	types of, matching, Always Match Pointer Types–Always Match Pointer Types, Using Static Analysis Tools
	
	undefined behavior of, Why You Should Become Proficient with Pointers
	
	validation function for, Bounded Pointers
	
	value of (an address)
		before initialization, Declaring Pointers
	
	displaying, Displaying Pointer Values–Virtual memory and pointers
	
	losing, memory leaks from, Losing the address
	
	as virtual memory
 address, Virtual memory and pointers
	

	to void, Pointer to void–Pointer to void, Pointers to void and addition
	
	wild pointers, Failure to Initialize a Pointer Before It Is Used–Dealing with Uninitialized Pointers
	
	zero (0) assigned to, The Concept of Null, To NULL or not to NULL
	

	points-to operator (->), Pointer Operators, Introduction
	
	polymorphism, Polymorphism in C–Polymorphism in C
	
	ports, accessing, Accessing a Port–Accessing a Port
	
	printf function
		field specifiers for displaying pointer
 values, Displaying Pointer Values–Displaying Pointer Values
	
	user-supplied format strings, not using, String Security Issues
	

	program stack (see stack)
	
	program termination
		address of zero (0) causing, Address of Operator
	
	buffer overflow causing, Pointer Usage Issues
	
	dangling pointers causing, Dealing with Dangling Pointers
	
	dereferencing null pointer causing, The Concept of Null
	
	double free causing, Double Free
	
	freeing memory at, Freeing Memory upon Program Termination
	
	invalid address causing, Declaring Pointers
	
	memory leaks causing, Memory Leaks, Hidden memory leaks
	
	stack overflow causing, Organization of a Stack Frame
	
	string initialized with character literal
 causing, Initializing a pointer to a char
	
	uninitialized pointers causing, Failure to Initialize a Pointer Before It Is Used
	

Q
	queues, Using Pointers to Support a Queue–Using Pointers to Support a Queue
	
	quotes (see double quotes; single quotes)
	

R
	RAII (Resource Acquisition Is Initialization), Resource Acquisition Is Initialization–Resource Acquisition Is Initialization
	
	realloc function, Dynamic Memory Allocation Functions, Using the realloc Function–Using the realloc Function, Using the realloc Function to Resize an Array–Using the realloc Function to Resize an Array
	
	restrict keyword, Using the restrict Keyword–Using the restrict Keyword
	
	return-to-libc attack, Security Issues and the Improper Use of Pointers
	
	right angle bracket (>), greater than
 operator, Pointer Operators
	
	right angle bracket, equal sign (>=), greater than
 or equal operator, Pointer Operators
	
	runtime system, Dynamic Memory Management in C
	

S
	scanf_s function, String Security Issues
	
	security, Security Issues and the Improper Use of Pointers–Security Issues and the Improper Use of Pointers
		ASLR, Security Issues and the Improper Use of Pointers
	
	buffer overflow (see buffer overflow)
	
	CERT organization, Security Issues and the Improper Use of Pointers
	
	clearing sensitive data, Clearing Sensitive Data
	
	denial of service attack, Pointer Usage Issues, Double Free
	
	DEP, Security Issues and the Improper Use of Pointers
	
	format string attack, String Security Issues
	
	malicious code inserted in memory, Security Issues and the Improper Use of Pointers, Pointer Usage Issues, Double Free
	
	return-to-libc attack, Security Issues and the Improper Use of Pointers
	
	stack overflow, Organization of a Stack Frame, Pointer Usage Issues
	
	VTable, exploitation of, Dangling Pointers
	

	single quotes (' '), enclosing character literals, String Fundamentals
	
	sizeof operator, Using the sizeof operator with pointers–Using the sizeof operator with pointers, Dynamic Memory Allocation
		for arrays, One-Dimensional Arrays
	
	with arrays, Two-Dimensional Arrays, Differences Between Arrays and Pointers
	
	improper use of, Misusing the sizeof Operator
	
	with pointers to void, Pointer to void
	

	size_t type, Understanding size_t–Understanding size_t
	
	smart pointers, Bounded Pointers
	
	snprintf function, String Security Issues
	
	special purpose addresses, accessing, Accessing a Special Purpose Address–Accessing a Special Purpose Address
	
	stack, Pointers and Functions–Organization of a Stack Frame, Using Pointers to Support a Stack–Using Pointers to Support a Stack
		alloca and malloca using, The alloca Function and Variable Length Arrays
	
	block statements using, Dangling Pointer Examples, Organization of a Stack Frame
	
	local variables using, Dynamic Memory Management in C, Program Stack, Organization of a Stack Frame, Organization of a Stack Frame
	
	parameters using, Organization of a Stack Frame, Organization of a Stack Frame
	
	threads using, Organization of a Stack Frame
	
	VLAs using, The alloca Function and Variable Length Arrays
	

	stack frames, Program Stack, Organization of a Stack Frame–Organization of a Stack Frame
	
	stack overflow, Organization of a Stack Frame, Pointer Usage Issues
	
	standard input, initializing strings from, Initializing a string from standard input
	
	static analysis tools, Using Static Analysis Tools–Using Static Analysis Tools
	
	static memory, Pointers and Memory
	
	static pointers, Global and static pointers, Using malloc with static and global pointers
	
	static variables, Dynamic Memory Management in C
		malloc not used for, Using malloc with static and global pointers
	
	returning pointers to, Pointers to Local Data
	

	stddef.h file, The Concept of Null
	
	stdio.h file, The Concept of Null, Understanding size_t
	
	stdlib.h file, The Concept of Null, Understanding size_t, Dynamic Memory Allocation Functions
	
	strcat function, Concatenating Strings–Concatenating Strings, String Security Issues
	
	strcat_s function, String Security Issues
	
	strcmp function, Comparing Strings
	
	strcpy function, Initializing an array of char, Copying Strings–Copying Strings, String Security Issues
	
	strcpy_s function, String Security Issues
	
	strict aliasing, Aliasing, Strict Aliasing, and the restrict Keyword, Strict Aliasing–Strict Aliasing
	
	string literal pool, The String Literal Pool–When a string literal is not a constant
	
	string literals, String Declaration
		declaring as a constant, When a string literal is not a constant
	
	memory location for, The String Literal Pool–When a string literal is not a constant
	
	modifying, When a string literal is not a constant
	

	string.h file, String Fundamentals
	
	strings, Pointers and Strings–Summary of string placement
		byte strings, String Fundamentals
	
	character literals, String Fundamentals
	
	comparing, Comparing Strings–Comparing Strings, Function Pointers and Strings–Function Pointers and Strings
	
	concatenating, Concatenating Strings–Concatenating Strings
	
	copying, Copying Strings–Copying Strings
	
	declared as array of characters, String Declaration
		initializing, Initializing an array of char–Initializing an array of char
	
	passing to functions, Passing a Simple String
	

	declared as pointer to a character, String Declaration
		initializing, Initializing a pointer to a char–Initializing a pointer to a char
	
	passing to functions, Passing a Simple String
	

	declared as string literal, String Declaration
	
	initialization of, String Initialization–Initializing a string from standard input, Passing a String to Be Initialized–Passing a String to Be Initialized
	
	length of, String Fundamentals, Initializing a pointer to a char
	
	memory location of, Summary of string placement
	
	passing as command-line arguments, Passing Arguments to an Application–Passing Arguments to an Application
	
	passing to functions, Pointers and Strings, Passing Strings–Passing a String to Be Initialized
	
	returning from functions, Returning Strings–Returning the address of a local string
	
	wide strings, String Fundamentals
	
	writing to memory outside of, String Security Issues–String Security Issues
	

	strlcat function, String Security Issues
	
	strlcpy function, String Security Issues
	
	strlen function, Initializing a pointer to a char
	
	strncat function, String Security Issues
	
	strncpy function, String Security Issues
	
	struct keyword, Introduction
	
	structures, Pointers and Structures–Introduction
		declaration of, Introduction–Introduction
	
	dot notation for, Introduction
	
	freeing, hidden memory leaks from, Hidden memory leaks
	
	implementing with pointers, Using Pointers to Support Data Structures–Using Pointers to Support Data Structures
	
	linked lists, Single-Linked List–Single-Linked List
	
	memory allocation for, How Memory Is Allocated for a Structure–How Memory Is Allocated for a Structure
		deallocation issues with, Structure Deallocation Issues–Structure Deallocation Issues
	
	managing yourself, Avoiding malloc/free Overhead–Avoiding malloc/free Overhead
	

	pointer arithmetic used with, Pointer Arithmetic and Structures–Pointer Arithmetic and Structures
	
	pointers to, declaration of, Introduction
	
	points-to operator for, Introduction
	
	queues, Using Pointers to Support a Queue–Using Pointers to Support a Queue
	
	stacks, Using Pointers to Support a Stack–Using Pointers to Support a Stack
	
	trees, Using Pointers to Support a Tree–Using Pointers to Support a Tree
	

	subtraction operator (-), Pointer Operators
	
	syslog function, String Security Issues
	

T
	TCMalloc, Dynamic Memory Allocation Technologies
	
	threads, Odds and Ends, Threads and Pointers–Using Function Pointers to Support Callbacks
		callback functions using, Using Function Pointers to Support Callbacks–Using Function Pointers to Support Callbacks
	
	sharing pointers between, Sharing Pointers Between Threads–Sharing Pointers Between Threads
	
	stack used by, Organization of a Stack Frame
	

	trees, Using Pointers to Support a Tree–Using Pointers to Support a Tree
	
	type punning, Using a Union to Represent a Value in Multiple Ways
	
	typedefs
		declaration of pointers using, Improper Pointer Declaration
	
	declaration of structures using, Introduction
	

U
	uintptr_t type, Using intptr_t and uintptr_t–Using intptr_t and uintptr_t
	
	union of data types, Aliasing, Strict Aliasing, and the restrict Keyword, Using a Union to Represent a Value in Multiple Ways–Using a Union to Represent a Value in Multiple Ways
	

V
	Variable Length Array (see VLA)
	
	virtual memory addresses, Virtual memory and pointers
	
	VLA (Variable Length Array), The alloca Function and Variable Length Arrays–The alloca Function and Variable Length Arrays, Using the realloc Function to Resize an Array
	
	void, pointers to, Pointer to void–Pointer to void, Pointers to void and addition
	
	volatile keyword, Accessing a Port
	
	VTable (Virtual Table), exploitation of, Dangling Pointers
	

W
	wchar.h file, String Fundamentals
	
	wchar_t data type, String Fundamentals
	
	website resources
		C specification, Why You Should Become Proficient with Pointers
	
	for this book, How to Contact Us
	

	wide strings, String Fundamentals
	
	wild pointers, Failure to Initialize a Pointer Before It Is Used–Dealing with Uninitialized Pointers
	
	wscanf_s function, String Security Issues
	

X
	%x field specifier, printf
 function, Displaying Pointer Values
	

Z
	zero (0)
		assigned to pointers, The Concept of Null, To NULL or not to NULL
	
	as overloaded, To NULL or not to NULL
	

About the Author
Richard Reese has worked in the industry and academics for the past 29 years. For 10 years he provided software development support at Lockheed and at one point developed a C based network application. He was a contract instructor providing software training to industry for 5 years. Richard is currently an Associate Professor at Tarleton State University in Stephenville Texas.

Colophon
The animal on the cover of Understanding and Using C
 Pointers is the piping crow-shrike, or Australian magpie
 (Cracticus tibicen). Not to be confused with the piping
 crow found in Indonesia, the Australian magpie is not a crow at all; it is
 related to butcherbirds and is native to Australia and southern New Guinea.
 There were once three separate species of Australian magpie, but
 interbreeding has resulted in the coalescence of their three species into
 one.
Australian magpies have black heads and bodies with varied black and
 white plumage on their backs, wings, and tails. The Australian magpie is
 also called the piping crow-shrike due to its multi-tonal, complex
 vocalizations. Like true crows, the Australian magpie is omnivorous, though
 it prefers to eat insect larvae and other invertebrates. It lives in groups
 of up to two dozen, and all members generally defend the group territory.
 During springtime, however, some breeding males will become defensive of
 their nests and will engage in swooping attacks on passersby, including
 human and their pets.
This magpie is a non-migratory bird and has adapted to human
 environments, as well as to a mix of forested and open areas. For that
 reason, it is not endangered, and although it is considered a pest species
 in neighboring New Zealand, the magpie may be very useful in Australia for
 keeping the invasive cane toad in check. When introduced to Australia, the
 cane toad had no natural predators, and its toxic secretions ensured the
 multiplication of its numbers. However, the highly intelligent magpie has
 learned to flip over the cane toad, pierce its underbelly, and use its long
 beak to eat the toad’s organs, thus bypassing the poisonous skin.
 Researchers are hopeful that the Australian magpie will become a natural
 predator of the cane toad and aid in population control.
The cover image is from Wood’s Animate Creation.
 The cover font is Adobe ITC Garamond. The text font is Adobe Minion Pro; the
 heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s
 Ubuntu Mono.

Understanding and Using C Pointers

Richard Reese

Editor
Simon St. Laurent

	Revision History
	2013-04-30	First release

Copyright © 2013 Richard Reese, Ph.D.

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Understanding
 and Using C Pointers, the image of a piping crow, and related
 trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2014-04-08T09:50:24-07:00

OEBPS/figs/uucp_0308.png
a

allocate
Array

main vector 500 | NULL main vector 500 | NULL

Before malloc After malloc After return

OEBPS/figs/uucp_0704.png
name 100
104

108

age 112

OEBPS/figs/uucp_0203.png
main

500| 5 |

A

pi100| 500 |

Before

Heap

Stack main

600| I

pi 100| 600 I

After

Heap

Stack

OEBPS/figs/uucp_0501.png
“Media Player” String Literal Pool

Heap

Program Stack

OEBPS/figs/uucp_0106.png
Static/Global | 9loPalpi [_NULL
staticpi | NULL

Heap

o | —
- —

OEBPS/figs/uucp_0514.png
sool [TT11o]

Heap

blanks number
spaces| 600 |

Program Stack
immediately before the function returns

Program Stack
after the function returns

Heap

OEBPS/figs/uucp_0213.png
main

tmpl 5 |

pi [600

Before

foo

Stack main

m

pi

600 Stack

After

OEBPS/figs/uucp_0115.png
const int limit = 500; 500
const int * const cpci = &limit; :’—»':l
const int * const * pcpci = &cpci; :’—»:I—»l:l

OEBPS/figs/uucp_0113.png
int num; |:|

int * const cpi = # | —>{ [int

OEBPS/figs/uucp_0703.png
ff| ff| ff]7f

100 101 102 103

OEBPS/bk01-toc.html
Understanding and Using C Pointers

Table of Contents
		Preface		Why This Book Is Different

		The Approach

		Audience

		Organization

		Summary

		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		1. Introduction		Pointers and Memory		Why You Should Become Proficient with Pointers

		Declaring Pointers

		How to Read a Declaration

		Address of Operator

		Displaying Pointer Values		Virtual memory and pointers

		Dereferencing a Pointer Using the Indirection Operator

		Pointers to Functions

		The Concept of Null		To NULL or not to NULL

		Pointer to void

		Global and static pointers

		Pointer Size and Types		Memory Models

		Predefined Pointer-Related Types		Understanding size_t

		Using the sizeof operator with pointers

		Using intptr_t and uintptr_t

		Pointer Operators		Pointer Arithmetic		Adding an integer to a pointer

		Pointers to void and addition

		Subtracting an integer from a pointer

		Subtracting two pointers

		Comparing Pointers

		Common Uses of Pointers		Multiple Levels of Indirection

		Constants and Pointers		Pointers to a constant

		Constant pointers to nonconstants

		Constant pointers to constants

		Pointer to (constant pointer to constant)

		Summary

		2. Dynamic Memory Management in C		Dynamic Memory Allocation		Memory Leaks		Losing the address

		Hidden memory leaks

		Dynamic Memory Allocation Functions		Using the malloc Function		To cast or not to cast

		Failing to allocate memory

		Not using the right size for the malloc function

		Determining the amount of memory allocated

		Using malloc with static and global pointers

		Using the calloc Function

		Using the realloc Function

		The alloca Function and Variable Length Arrays

		Deallocating Memory Using the free Function		Assigning NULL to a Freed Pointer

		Double Free

		The Heap and System Memory

		Freeing Memory upon Program Termination

		Dangling Pointers		Dangling Pointer Examples

		Dealing with Dangling Pointers

		Debug Version Support for Detecting Memory Leaks

		Dynamic Memory Allocation Technologies		Garbage Collection in C

		Resource Acquisition Is Initialization

		Using Exception Handlers

		Summary

		3. Pointers and Functions		Program Stack and Heap		Program Stack

		Organization of a Stack Frame

		Passing and Returning by Pointer		Passing Data Using a Pointer

		Passing Data by Value

		Passing a Pointer to a Constant

		Returning a Pointer

		Pointers to Local Data

		Passing Null Pointers

		Passing a Pointer to a Pointer		Writing your own free function

		Function Pointers		Declaring Function Pointers

		Using a Function Pointer

		Passing Function Pointers

		Returning Function Pointers

		Using an Array of Function Pointers

		Comparing Function Pointers

		Casting Function Pointers

		Summary

		4. Pointers and Arrays		Quick Review of Arrays		One-Dimensional Arrays

		Two-Dimensional Arrays

		Multidimensional Arrays

		Pointer Notation and Arrays		Differences Between Arrays and Pointers

		Using malloc to Create a One-Dimensional Array

		Using the realloc Function to Resize an Array

		Passing a One-Dimensional Array		Using Array Notation

		Using Pointer Notation

		Using a One-Dimensional Array of Pointers

		Pointers and Multidimensional Arrays

		Passing a Multidimensional Array

		Dynamically Allocating a Two-Dimensional Array		Allocating Potentially Noncontiguous Memory

		Allocating Contiguous Memory

		Jagged Arrays and Pointers

		Summary

		5. Pointers and Strings		String Fundamentals		String Declaration

		The String Literal Pool		When a string literal is not a constant

		String Initialization		Initializing an array of char

		Initializing a pointer to a char

		Initializing a string from standard input

		Summary of string placement

		Standard String Operations		Comparing Strings

		Copying Strings

		Concatenating Strings

		Passing Strings		Passing a Simple String

		Passing a Pointer to a Constant char

		Passing a String to Be Initialized

		Passing Arguments to an Application

		Returning Strings		Returning the Address of a Literal

		Returning the Address of Dynamically Allocated Memory		Returning the address of a local string

		Function Pointers and Strings

		Summary

		6. Pointers and Structures		Introduction		How Memory Is Allocated for a Structure

		Structure Deallocation Issues

		Avoiding malloc/free Overhead

		Using Pointers to Support Data Structures		Single-Linked List

		Using Pointers to Support a Queue

		Using Pointers to Support a Stack

		Using Pointers to Support a Tree

		Summary

		7. Security Issues and the Improper Use of Pointers		Pointer Declaration and Initialization		Improper Pointer Declaration

		Failure to Initialize a Pointer Before It Is Used

		Dealing with Uninitialized Pointers

		Pointer Usage Issues		Test for NULL

		Misuse of the Dereference Operator

		Dangling Pointers

		Accessing Memory Outside the Bounds of an Array

		Calculating the Array Size Incorrectly

		Misusing the sizeof Operator

		Always Match Pointer Types

		Bounded Pointers

		String Security Issues

		Pointer Arithmetic and Structures

		Function Pointer Issues

		Memory Deallocation Issues		Double Free

		Clearing Sensitive Data

		Using Static Analysis Tools

		Summary

		8. Odds and Ends		Casting Pointers		Accessing a Special Purpose Address

		Accessing a Port

		Accessing Memory using DMA

		Determining the Endianness of a Machine

		Aliasing, Strict Aliasing, and the restrict Keyword		Using a Union to Represent a Value in Multiple Ways

		Strict Aliasing

		Using the restrict Keyword

		Threads and Pointers		Sharing Pointers Between Threads

		Using Function Pointers to Support Callbacks

		Object-Oriented Techniques		Creating and Using an Opaque Pointer

		Polymorphism in C

		Summary

		Index

		About the Author

		Colophon

		Copyright

OEBPS/figs/uucp_0212.png
p1 (] 500
main p2| 500 Stack

Before

OEBPS/figs/uucp_0701.png
pi 100
104

OEBPS/figs/uucp_0101.png
Using an Array Using Pointers

Head

10

1

12
Donner

B hext
Moore

15

next

OEBPS/figs/uucp_0503.png
main

600 (mfe[d]i]a] [P]I]a]y]e]r]\|

200(Mfe[d]ia] [p]i]a]y[efr]\]
A

header 100 | 200 I

Program Stack

String Literal Pool

Heap

OEBPS/figs/uucp_0109.png
vector[0] 100 | 28

vector[1] 104 | 41

vector[2] 108 | 7

p0 112 | 100

po 116 | 104

p0 120 | 108

OEBPS/figs/uucp_0406.png
buffer
getline

currentPosition

main

OEBPS/figs/uucp_0402.png
matrix[0]{0] 100
matrix[0][1] 104
matrix[0][2] 108
matrix[1]{0] 112
matrix[1][1] 116

(I

]
]
]
]
]
matrix[1][2] 120

1
1
1

[« K% 0 B K= S)

Row :

OEBPS/figs/uucp_0205.png
main

i]

Before

Stack

OEBPS/figs/uucp_0605.png
Head Tail

Data

I |

Single-Linked List

Data

NULL | previous

Double-Linked List

OEBPS/figs/uucp_0207.png
Heap
soofo[1]a[3]4]5ef7]s[o[A[8]o] [| |
600 [o[1T2[34]5]6]7 8] oTAIB[o] - []

t
string1 [__500 |]
main strinng 600 | Stack

OEBPS/orm_front_cover.jpg
Core Techniques for Memory Management

O’REILLY*® Richard Reese

OEBPS/figs/uucp_0604.png
Underwood

Heap

processPerson person

main

Program Stack

OEBPS/figs/uucp_0104.png
num 100
pi 104
108

100

OEBPS/figs/uucp_0201.png
main

500 | 5 I

7 N

pi 100

500

Heap

Stack

OEBPS/figs/uucp_0103.png
1.pciisavariable const int *pci;
2. pciisa pointer variable const int *pci;
3. pciisa pointer variable to aninteger const int *pci;

4. pciisapointer variable to a constant integer const int *pci;

OEBPS/figs/uucp_0211.png
main

500| 5 |

A

pi100| 500 |

Before

Stack main

50 7?7
e

pi100| 500
After

Stack

OEBPS/figs/uucp_0602.png
processPerson

main

person

Program Stack

Heap

OEBPS/figs/uucp_0413.png
display2DArray

main

arr| 100

rows [E

matrix 100 1]2]3]4]5]6]7]8]9]10]

OEBPS/figs/uucp_0610.png
left child right child
A 4

| S;I'Iy | | Susan |

OEBPS/oreilly_large.png.jpg
OREILLY®

OEBPS/figs/uucp_0606.png
name name
age age

Heap

linkedList

OEBPS/figs/uucp_0608.png
e tmp Tall

Starting state

State after 1

State after 2

Ta||

next NULL next NULL State after 3

OEBPS/figs/uucp_0112.png
int num; :]
int *pi; o Jime
const int limit = 100; | 100

. . int or
const int *pci; I:‘ """" D const int

OEBPS/figs/uucp_0505.png
Y N
Hnﬂn. String Literal Pool
—— R

globalHeader

globalArrayHeader | CJh[a]p] t]e[r]\0)

staticHeader

staticArrayHeader [C]h]a]p]t]e|r|\0

Global Memory

Heap

localHeader

globalHeader localArrayHeader [C[h]a]p[t]e] r]\0

heapHeader

main

Program Stack

OEBPS/figs/uucp_0310.png
main

functions

'[=]
fptr1| 1000 I

Program Stack

}

Heap

OEBPS/figs/uucp_0405.png
Heap

500

pv100 [~ 500

Program Stack

OEBPS/figs/uucp_0601.png
people[0]

people[1]

people[2]

100
104
108
12
116
120
124
128
132
136
140
144

OEBPS/figs/uucp_0419.png
arr1[0]{0] 100
arr1[0][1] 104
arr1[0][2] 108
arr1[1]{0] 112
arr1[1][1] 116
arr1[1](2] 120
arr1[2][0] 124
arr1[2][1] 128

(210

]
]
]
]
]
]
]
]
arr1[2][2] 132

0
0
1
1
1
2
2
2

(==} B N] oW N, | BNy ROV §)) Nel

OEBPS/figs/uucp_0209.png
main pi| NULL Stack

Before

OEBPS/figs/uucp_0404.png
92| .. | &vector[-2] vector-2 &pv[-2] pv-2

pv 96 | 100
vector[0] 100
vector[1] 104
vector[2] 108
vector[3] 112
vector[4] 116
120

&vector vector+0 &pv[0] pv
&vector[1] vector+1 &pv[1] pv+1

(O] 5N NUTY § SY

140|:|8Nector[10] vector+ 10 &pv[10] pv+ 10

OEBPS/figs/uucp_0407.png
trim

main

50

[[[c]a]tfo]

[T

(=}

hrase |_ 500

word | 500

—— Before
— After

Heap

Program Stack

OEBPS/figs/uucp_0512.png
Heap

main -simpIeArray100 ﬂm!llﬂlnmﬂ

Program Stack

OEBPS/figs/uucp_0408.png
arr200| 100

size204 [[5]

displayArray

main | [vector 100{1]2]3]4]5]

Program Stack

OEBPS/figs/uucp_0607.png
name name
age

OEBPS/figs/uucp_0301.png
| Object1 |

A
Object2

function2 vart [:I Heap

function1 var3 | |
main vard :l

Program Stack

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/figs/uucp_0805.png
Shape Rectangle

vFunctions base | vFunctions

setX
setY
getX
getY
display

setX
setY
getX
getY

display

OEBPS/DejaVuSerif.otf

OEBPS/figs/uucp_0412.png
arr[i][]]

address of arr + (i * size of row) + (j * size of element)

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/figs/uucp_0302.png
dverage

main

sum 480 :l

Return Address

arr 500 :l
]

size 504

¢— Stack Pointer

| €¢—— Base Pointer

Program Stack

OEBPS/figs/uucp_0304.png
swap

main

num1 488 5
numa2 492 10

n1500 5
n2 504 10

swap

main

num1 488
num2 492
n2 504

Program Stack: Before

Program Stack: After

OEBPS/figs/uucp_0303.png
swap

main

pnum1488 500
pnum2 492 504

50 [5]
2504

swap

main

pnum1 488 500
pnum2 492 504

n1 500

Program Stack: Before

Program Stack: After

OEBPS/figs/uucp_0110.png
bestBooks[
bestBooks[
bestBooks|

englishBooks

englishBooks[
englishBooks[.
englishBooks[

N =o

EE==

title[0
title[1
title[2
title[3
title[4
title[5
title[6

200
300
400
500
600
700
800

OEBPS/figs/uucp_0210.png
main

500| 5 |
A4

p1[] 500
p2 | 500

Before

Stack main

After

Stack

OEBPS/figs/uucp_0506.png
main

600 [Qfu]i]t]\d

command 300 [Q[u[i [t][]

Program Stack

String Literal Pool

Heap

OEBPS/figs/uucp_0111.png
num 100
limit 104
pi 108
pci 112

500

100

104

OEBPS/figs/uucp_0411.png
matrix[0]
matrix[1]

A\ A 4

OEBPS/figs/uucp_0603.png
Underwood

Heap

processPerson

main

Program Stack

OEBPS/figs/uucp_0507.png
600{S]a|m{\0f | Heap
7'y

name 200 [S{a|m|\o| |]D
names[0]| 600
names[1]
names|[2]

names[29] |:|
count

Program Stack

main

OEBPS/figs/uucp_0508.png
600 | Amorphous Compounds ﬁ_ String Literal Pool

pageHeaders[0]
pageHeaders[1]
pageHeaders[2]
pageHeaders[3]

main

pageHeaders[12] | 600
pageHeaders[13] | 600

pageHeaders[29] |:|

Program Stack

OEBPS/figs/uucp_0208.png
main

500| 5 |

A

pi [500

Before

Stack main

500 5
e
pi| 500
After

Stack

OEBPS/figs/uucp_0509.png
EEEEIINHIEEEMEIHEMEH String Lteral Poo

Heap

Program Stack

OEBPS/figs/uucp_0510.png
500 [ERTRTOTRT: T[N[oft] Je[n[o[ulg[h[[m[e[m[o]r]y[\0] stringLitera Pool
508
ﬁ
Heap| 00 [EIRIRIOIRT: T TNTo]] Te[n[o[u[g[b] fm[e[m[o] rTyJio]
After copy 508

main

Program Stack

OEBPS/figs/uucp_0702.png
lastName 100
104
middleName 108
12

firstName 116
120

1234

56X0

X234

5670

<¢— middleName[-2]
<¢— middleName[0]

12X4

<¢— middleName[10]

5670

OEBPS/figs/uucp_0504.png
main

600 (mfe[d]i]a] [P]I]a]y]e]r]\|
yY

header 100| 600

Program Stack

String Literal Pool

Heap

OEBPS/figs/uucp_0102.png
num 100
pi 104
108

OEBPS/figs/uucp_0107.png
vector[0] 100 | 28

vector[1] 104 | 41

vector[2] 108 | 7

pi112] 100

OEBPS/figs/uucp_0204.png
Heap

600[Sfufs]a[n]o]

main name | 605

Program Stack

OEBPS/figs/uucp_0105.png
num 100
pi 104
108

200

100

OEBPS/figs/uucp_0418.png
Rows 1

Columns

o 1 2 3
01213
4 |5

6 7] 8]

OEBPS/figs/uucp_0417.png
main

600

adiNEREREER

matrix 100

600

OEBPS/figs/uucp_0804.png
nun1| 78 | 56 | 34 | 12 |

100 101 102 103

OEBPS/figs/uucp_0502.png
600 [Mleld]i]a] [P[I{aly]e]r]\o] [String Literal Pool

Heap

main | [header 100 [M]e]d]i{a| [P[I]a]y]e]r]\]

Program Stack

OEBPS/figs/uucp_0420.png
arr2[0]{0] 100
arr2[0][1] 104
arr2[0][2] 108
arr2[0](3] 112
arr2[1][0] 116
arr2[1][1] 120
arr2[2][0] 124
arr2[2](1] 128

(210

0
0
0
1
1
2
2
arr2[2](2] 132

]
]
]
]
]
]
]
]
]

(==} B N] o ¥ N | BN ROV §)) Nel

OEBPS/figs/uucp_0511.png
500 [E[R[R[O[R]:] o[NJo]t] [e[n[oJulg]h] |m|e[mfo]r]y]\of string Literal Poo

508

Heap

N e ERRRRE
mnlnnnmmmnmnn

Program Stack

OEBPS/figs/uucp_0306.png
size 600
allocateArray value 604

ar 620

main vector :]

Before

prlntf Stack Frame

OEBPS/figs/uucp_0114.png
int num; |:|
const int limit = 100;
const int * const cpci = &limit; :'_’Izltl:gﬁsgrint

OEBPS/figs/uucp_0307.png
HEEEE

main vector 500

Before After

OEBPS/figs/uucp_0305.png
HEEEE

main

Before After

OEBPS/figs/uucp_0401.png
vector[0] 100
vector[1] 104
vector[2] 108
vector[3] 112
vector[4] 116

OEBPS/figs/uucp_0801.png
4— Application’s Valid

Address Space

1
num 1000 i[8
pi1004i| 8

1008 }

OEBPS/figs/uucp_0515.png
blanks

main

spaces 300 ;']:DD

tmpl 300 I

Program Stack

Heap

OEBPS/figs/uucp_0108.png
$120
ps 124
c128
pc 132

120

128

OEBPS/figs/uucp_0513.png
main

argv[0] 300
argv[1]304
argv[2] 308
argv[3]312
argv[4]316

400

— 400

450

— 450

500

— 500

C:/process.exe

names.txt

550

— 550

limit=12

600

— 600

-verbose

argc
argv

300

Program Stack

Heap

OEBPS/figs/uucp_0403.png
arr3d[0][0]{0] 100 | 1
arr3d[0][0][1] 104 | 2
arr3d[0][0][2] 108 | 3
arr3d[0][0][3] 112 | 4
arr3d[0][1][0] 116 | 5
arr3d[0][1][1]120] 6

am3d[2][1](31192

OEBPS/figs/uucp_0416.png
main

600

s 600 FPLLLI T IT11]
so4| [620 b2
matrix 100 500

OEBPS/figs/uucp_0415.png
main

600

700

500 600
504 700
matrix 100 500

OEBPS/figs/uucp_0202.png
Extra memory | Heap

0Jo]o]ofofo]o]o

7' N

1
main pc

Program Stack

60

(=}

OEBPS/figs/uucp_0803.png
100
port 104
108
12

0xB0000000
0xB0000004

0xB0000000

0x0BF4

4| External Device

OEBPS/figs/uucp_0309.png
parameters

|

void (*foo)();

Return type Function pointer’s
variable name

OEBPS/figs/uucp_0802.png
100
video 104
108
12

0xB8000
oxB8004
0xB8008 :
oxB80OC

0xB8000

OEBPS/figs/uucp_0206.png
|Heap
o1[2[3]4]s]e[7[s]o]AT8[o] | |

strlng1[00 |
main str|n92| | Stack

50

(=}

OEBPS/figs/uucp_0409.png
arr[0] 100 | 500 » 0
arr[1] 104 | 504 > 1
arr[2] 108 | 508 | 2
arr[3] 112 | 512 2
arr[4] 116 | 516 » 4
arr —»100
arr+1—»104

*Garr + 1) —»504

**arr+ 1) —»1

500
504
508
512
516

OEBPS/figs/uucp_0410.png
matrix[0][0] 100
matrix[0][1] 104
matrix[0][2] 108
matrix[0][3] 112
matrix[0][4] 116
matrix[1][0] 120
(11011124
[1]12] 128
(1131132
(11141136

matrix
matrix

0
0
0
0
1
1
1
1
matrix[1

Il
Il
Il
Il
Il
Il
Il
Il
Il
Il

Ol |IN|onjn]B|WIN)—

—_
o

OEBPS/figs/uucp_0609.png
main

