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Preface



C is an important language and has had extensive treatment over the
  years. Central to the language are pointers that provide much of the
  flexibility and power found in the language. It provides the mechanism to
  dynamically manipulate memory, enhances support for data structures, and
  enables access to hardware. This power and flexibility comes with a price:
  pointers can be difficult to master.
Why This Book Is Different



Numerous books have been written about C. They usually offer a broad
    coverage of the language while addressing pointers only to the extent
    necessary for the topic at hand. Rarely do they venture beyond a basic
    treatment of pointers and most give only cursory coverage of the important
    memory management technology involving the stack and the heap. Yet without
    this discussion, only an incomplete understanding of pointers can be
    obtained. The stack and heap are areas of memory used to support functions
    and dynamic memory allocation, respectively.
Pointers are complex enough to deserve more in-depth treatment. This
    book provides that treatment by focusing on pointers to convey a deeper
    understanding of C. Part of this understanding requires a working
    knowledge of the program stack and heap along with the use of pointers in
    this context. Any area of knowledge can be understood at varying degrees,
    ranging from a cursory overview to an in-depth, intuitive understanding.
    That higher level of understanding for C can only be achieved with a solid
    understanding of pointers and the management of memory.

The Approach



Programming is concerned with manipulating data that is normally
    located in memory. It follows that a better understanding of how C manages
    memory will provide insight that translates to better programming. While
    it is one thing to know that the malloc function
    allocates memory from the heap, it is another thing to understand the
    implications of this allocation. If
    we allocate a structure whose logical size is 45, we may be surprised to
    learn that more than 45 bytes are typically allocated and the memory
    allocated may be fragmented.
When a function is called, a stack frame is created and pushed onto
    the program stack. Understanding stack frames and the program stack will
    clarify the concepts of passing by value and passing by pointer. While not
    necessarily directly related to pointers, the understanding of stack
    frames also explains how recursion works.
To facilitate the understanding of pointers and memory management
    techniques, various memory models will be presented. These range from a
    simple linear representation of memory to more complex diagrams that
    illustrate the state of the program stack and heap for a specific example.
    Code displayed on a screen or in a book is a static representation of a
    dynamic program. The abstract nature of this representation is a major
    stumbling block to understanding a program’s behavior. Memory models go a
    long way to helping bridge this gap.

Audience



The C language is a block structured language whose procedural
    aspects are shared with most modern languages such as C++ and Java. They
    all use a program stack and heap. They all use pointers, which are often
    disguised as references. We assume that you have a minimal understanding
    of C. If you are learning C, then this book will provide you with a more
    comprehensive treatment of pointers and memory than is found in other
    books. It will expand your knowledge base regarding C and highlight
    unfamiliar aspects of C. If you are a more experienced C or C++
    programmer, this book will help you fill in possible gaps regarding C and
    will enhance your understanding of how they work “under the hood,” thus
    making you a better programmer. If you are a C# or Java developer, this
    book will help you better understand C and provide you with insight into
    how object-oriented languages deal with the stack and the heap.

Organization



The book is organized along traditional topics such as arrays,
    structures, and functions. However, each chapter focuses on the use of
    pointers and how memory is managed. For example, passing and returning
    pointers to and from functions are covered, and we also depict their use
    as part of stack frames and how they reference memory in the heap.
	Chapter 1, Introduction
	This chapter covers pointer basics for those who are not
          necessarily proficient or are new to pointers. This includes pointer
          operators and the declaration of different types of pointers such as
          constant pointers, function pointers, and the use of
          NULL and its closely related variations. This can
          have a significant impact on how memory is allocated and
          used.

	Chapter 2, Dynamic Memory Management in C
	Dynamic memory allocation is the subject of Chapter 2. The standard memory
          allocation functions are covered along with techniques for dealing
          with the deallocation of memory. Effective memory deallocation is
          critical to most applications, and failure to adequately address
          this activity can result in memory leaks and dangling pointers.
          Alternative deallocation techniques, including garbage collection
          and exception handlers, are presented.

	Chapter 3, Pointers and Functions
	Functions provide the building blocks for an application’s
          code. However, passing or returning data to and from functions can
          be confusing to new developers. This chapter covers techniques for
          passing data, along with common pitfalls that occur when returning
          information by pointers. This is followed by extensive treatment of
          function pointers. These types of pointers provide yet another level
          of control and flexibility that can be used to enhance a
          program.

	Chapter 4, Pointers and Arrays
	While array notation and pointer notation are not completely
          interchangeable, they are closely related. This chapter covers
          single and multidimensional arrays and how pointers are used with
          them. In particular, passing arrays and the various nuisances
          involved in dynamically allocating arrays in both a contiguous and a
          noncontiguous manner are explained and illustrated with different
          memory models.

	Chapter 5, Pointers and Strings
	Strings are an important component of many applications. This
          chapter addresses the fundamentals of strings and their manipulation
          with pointers. The literal pool and its impact on pointers is
          another often neglected feature of C. Illustrations are provided to
          explain and illuminate this topic.

	Chapter 6, Pointers and Structures
	Structures provide a very useful way of ordering and
          manipulating data. Pointers enhance the utility of structures by
          providing more flexibility in how they can be constructed. This
          chapter presents the basics of structures as they relate to memory
          allocation and pointers, followed by examples of how they can be
          used with various data structures.

	Chapter 7, Security Issues and the Improper Use of Pointers
	As powerful and useful as pointers can be, they are also the
          source of many security problems. In this chapter, we examine the
          fundamental problems surrounding buffer overflow and related pointer
          issues. Techniques for mitigating many of these problems are
          presented.

	Chapter 8, Odds and Ends
	The last chapter addresses other pointer techniques and
          issues. While C is not an object-oriented language, many aspects of
          object-oriented programming can be incorporated into a C program,
          including polymorphic behavior. The essential elements of using
          pointers with threads are illustrated. The meaning and use of the
          restrict keyword are covered.




Summary



This book is intended to provide a more in-depth discussion of the
    use of pointers than is found in other books. It presents examples ranging
    from the core use of pointers to obscure uses of pointers and identifies
    common pointer problems.

Conventions Used in This Book



The following typographical conventions are used in this
    book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
          file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
          refer to program elements such as variable or function names,
          databases, data types, environment variables, statements, and
          keywords.

	Constant width bold
	Shows commands or other text that should be typed literally by
          the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
          or by values determined by context.



Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.


Using Code Examples



This book is here to help you get your job done. In general, if
    this book includes code examples, you may use the code in your programs
    and documentation. You do not need to contact us for permission unless
    you’re reproducing a significant portion of the code. For example, writing
    a program that uses several chunks of code from this book does not require
    permission. Selling or distributing a CD-ROM of examples from O’Reilly
    books does require permission. Answering a question by citing this book
    and quoting example code does not require permission. Incorporating a
    significant amount of example code from this book into your product’s
    documentation does require permission.
We appreciate, but do not require, attribution. An attribution
    usually includes the title, author, publisher, and ISBN. For example:
    “Understanding and Using C Pointers by Richard Reese
    (O’Reilly). Copyright 2013 Richard Reese, Ph.D. 978-1-449-34418-4.”
If you feel your use of code examples falls outside fair use or the
    permission given above, feel free to contact us at
    permissions@oreilly.com.

Safari® Books Online



Note
Safari Books Online (www.safaribooksonline.com)
      is an on-demand digital library that delivers expert content in both
      book and video form from the world’s leading authors in technology and
      business.

Technology professionals, software developers, web designers, and
    business and creative professionals use Safari Books Online as their
    primary resource for research, problem solving, learning, and
    certification training.
Safari Books Online offers a range of product mixes
    and pricing programs for organizations,
    government
    agencies, and individuals.
    Subscribers have access to thousands of books, training videos, and
    prepublication manuscripts in one fully searchable database from
    publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
    Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
    Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
    Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
    McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
    information about Safari Books Online, please visit us online.

How to Contact Us



Please address comments and questions concerning this book to the
    publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata,
    examples, and any additional information. You can access this page at
    http://oreil.ly/Understand_Use_CPointers.
To comment or ask technical questions about this book, send email to
    bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
    news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. Introduction



A solid understanding of pointers and the ability to effectively
  use them separates a novice C programmer from a more experienced one.
  Pointers pervade the language and provide much of its flexibility. They
  provide important support for dynamic memory allocation, are closely tied to
  array notation, and, when used to point to functions, add another dimension
  to flow control in a program.
Pointers have long been a stumbling block in learning C. The basic
  concept of a pointer is simple: it is a variable that stores the address of
  a memory location. The concept, however, quickly becomes complicated when we
  start applying pointer operators and try to discern their often cryptic
  notations. But this does not have to be the case. If we start simple and
  establish a firm foundation, then the advanced uses of pointers are not hard
  to follow and apply.
The key to comprehending pointers is understanding how memory is
  managed in a C program. After all, pointers contain addresses in memory. If
  we don’t understand how memory is organized and managed, it is difficult to
  understand how pointers work. To address this concern, the organization of
  memory is illustrated whenever it is useful to explain a pointer concept.
  Once you have a firm grasp of memory and the ways it can be organized,
  understanding pointers becomes a lot easier.
This chapter presents an introduction to pointers, their operators,
  and how they interact with memory. The first section examines how they are
  declared, the basic pointer operators, and the concept of null. There are
  various types of “nulls” supported by C so a careful examination of them can
  be enlightening.
The second section looks more closely at the various memory models you
  will undoubtedly encounter when working with C. The model used with a given
  compiler and operating system environment affects how pointers are used. In
  addition, we closely examine various predefined types related to pointers
  and the memory models.
Pointer operators are covered in more depth in the next section,
  including pointer arithmetic and pointer comparisons. The last section
  examines constants and pointers. The numerous declaration combinations offer
  many interesting and often very useful possibilities.
Whether you are a novice C programmer or an experienced programmer,
  this book will provide you with a solid understanding of pointers and fill
  the gaps in your education. The experienced programmer will want to pick and
  choose the topics of interest. The beginning programmer should probably take
  a more deliberate approach.
Pointers and Memory



When a C program is compiled, it works with three types of
    memory:
	Static/Global
	Statically declared variables are allocated to this type of
          memory. Global variables also use this region of memory. They are
          allocated when the program starts and remain in existence until the
          program terminates. While all functions have access to global
          variables, the scope of static variables is restricted to their
          defining function.

	Automatic
	These variables are declared within a function and are
          created when a function is called. Their scope is restricted to the
          function, and their lifetime is limited to the time the function is
          executing.

	Dynamic
	Memory is allocated from the heap and can be released as
          necessary. A pointer references the allocated memory. The scope is
          limited to the pointer or pointers that reference the memory. It
          exists until it is released. This is the focus of Chapter 2.



Table 1-1 summarizes the scope of and lifetime of variables used in these memory
    regions.
Table 1-1. Scope and lifetime
	 	Scope	Lifetime
	Global	The entire file	The lifetime of the application
	Static	The function it is declared within	The lifetime of the application
	Automatic (local)	The function it is declared within	While the function is executing
	Dynamic	Determined by the pointers that reference this
            memory	Until the memory is freed



Understanding these types of memory will enable you to better
    understand how pointers work. Most pointers are used to manipulate data in
    memory. Understanding how memory is partitioned and organized will clarify
    how pointers manipulate memory.
A pointer variable contains the address in memory of another
    variable, object, or function. An object is considered to be memory
    allocated using one of the memory allocation functions, such as the
    malloc function. A pointer is normally
    declared to be of a specific type depending on what it points to, such as
    a pointer to a char. The object may be
    any C data type such as integer, character, string, or structure. However,
    nothing inherent in a pointer indicates what type of data the pointer is
    referencing. A pointer only contains an address.
Why You Should Become Proficient with Pointers



Pointers have several uses, including:
	Creating fast and efficient code

	Providing a convenient means for addressing many types of
          problems

	Supporting dynamic memory allocation

	Making expressions compact and succinct

	Providing the ability to pass data structures by pointer
          without incurring a large overhead

	Protecting data passed as a parameter to a function



Faster and more efficient code can be written because pointers are
      closer to the hardware. That is, the compiler can more easily translate
      the operation into machine code. There is not as much overhead
      associated with pointers as might be present with other operators.
Many data structures are more easily implemented using
      pointers. For example, a linked list could be supported using either
      arrays or pointers. However, pointers are easier to use and map directly
      to a next or previous link. An array implementation requires array
      indexes that are not as intuitive or as flexible as pointers.
Figure 1-1 illustrates
      how this can be visualized using arrays and pointers for a linked list
      of employees. The lefthand side of the figure uses an array. The head
      variable indicates that the linked list’s first element is at index 10
      of the array. Each array’s element contains a structure that represents
      an employee. The structure’s next
      field holds the index in the array of the next employee. The shaded
      elements represent unused array elements.
The righthand side shows the equivalent representation using
      pointers. The head variable holds a pointer to the first employee’s
      node. Each node holds employee data as well as a pointer to the next
      node in the linked list.
The pointer representation is not only clearer but also more
      flexible. The size of an array typically needs to be known when it is
      created. This will impose a restriction on the number of elements it can
      hold. The pointer representation does not suffer from this limitation as
      a new node can be dynamically allocated as needed.
[image: Array versus pointers representation of a linked list]

Figure 1-1. Array versus pointers representation of a linked list

Dynamic memory allocation is effected in C through the use of
      pointers. The malloc and free functions are used to allocate and
      release dynamic memory, respectively. Dynamic memory allocation enables
      variable-sized arrays and data structures, such as linked lists and
      queues. However, in the new C standard, C11, variable size arrays are
      supported.
Compact expressions can be very descriptive but can also be
      cryptic, as pointer notation is not always fully understood by many
      programmers. Compact expressions should address a specific need and not
      be cryptic just to be cryptic. For example, in the following sequence,
      the third character of the names'
      second element is displayed with two different printf functions. If this usage of pointers is
      confusing, don’t worry—we will explain how dereferencing works in more
      detail in the section Dereferencing a Pointer Using the Indirection Operator.
      While the two approaches are equivalent and will display the character
      n, the simpler approach is to use array
      notation.
    char *names[] = {"Miller","Jones","Anderson"};
    printf("%c\n",*(*(names+1)+2));
    printf("%c\n",names[1][2]);
Pointers represent a powerful tool to create and enhance
      applications. On the downside, many problems can occur when using
      pointers, such as:
	Accessing arrays and other data structures beyond their
          bounds

	Referencing automatic variables after they have gone out of
          existence

	Referencing heap allocated memory after it has been
          released

	Dereferencing a pointer before memory has been allocated to
          it



These types of problems will be examined in more detail in Chapter 7.
The syntax and semantics of pointer usage are fairly well
      defined in the C
      specification. However, there are situations where the
      specification does not explicitly define pointer behavior. In these
      cases the behavior is defined to be either:
	Implementation-defined
	Some specific, documented implementation is provided. An
            example of implementation-defined behavior is how the high-order
            bit is propagated in an integer shift right operation.

	Unspecified
	Some implementation is provided but is not documented. An
            example of an unspecified behavior is the amount of memory
            allocated by the malloc
            function with an argument of zero. A list of unspecified behavior
            can be found at CERT Secure
            Coding Appendix DD.

	Undefined
	There are no requirements imposed and anything can happen.
            An example of this is the value of a pointer deallocated by the
            free functions. A list of
            unspecified behavior can be found at CERT Secure Coding Appendix
            CC.



Sometimes there are locale-specific behaviors. These are usually
      documented by the compiler vendor. Providing locale-specific behavior
      allows the compiler-writer latitude in generating more efficient
      code.

Declaring Pointers



Pointer variables are declared using a data type followed by an
      asterisk and then the pointer variable’s name. In the following example,
      an integer and a pointer to an integer are declared:
   int num;
   int *pi;
The use of white spaces around the asterisk is irrelevant. The
      following declarations are all equivalent:
   int* pi;
   int * pi;
   int *pi;
   int*pi;
Note
The use of white space is a matter of user preference.

The asterisk declares the variable as a pointer. It is an
      overloaded symbol as it is also used for multiplication and
      dereferencing a pointer.
Figure 1-2
      illustrates how memory would typically be allocated for the above
      declaration. Three memory locations are depicted by the three
      rectangles. The number to the left of each rectangle is its address. The
      name next to the address is the variable assigned to this location. The
      address 100 is used here for illustrative purposes. The actual address
      of a pointer, or any variable for that matter, is not normally known,
      nor is its value of interest in most applications. The three dots
      represent uninitialized memory.
Pointers to uninitialized memory
      can be a problem. If such a pointer is dereferenced, the pointer’s
      content probably does not represent a valid address, and if it does, it
      may not contain valid data. An invalid address is one that the program
      is not authorized to access. This will result in the program terminating on most platforms,
      which is significant and can lead to a number of problems, as discussed
      in Chapter 7.
[image: Memory diagram]

Figure 1-2. Memory diagram

The variables num and pi are located at addresses 100 and 104,
      respectively. Both are assumed to occupy four bytes. Both of these sizes
      will differ, depending on the system configuration as addressed in the
      section Pointer Size and Types. Unless otherwise
      noted, we will use four-byte integers for all of our examples.
Note
In this book, we will use an address such as 100 to explain how
        pointers work. This will simplify the examples. When you execute the
        examples you will get different addresses, and these addresses can
        even change between repeated executions of the program.

There are several points to remember:
	The content of pi should
          eventually be assigned the address of an integer variable.

	These variables have not been initialized and thus contain
          garbage.

	There is nothing inherent to a pointer’s implementation that
          suggests what type of data it is referencing or whether its contents
          are valid.

	However, the pointer type has been specified and the compiler
          will frequently complain when the pointer is not used
          correctly.



Note
By garbage, we mean the memory allocation could contain any
        value. When memory is allocated it is not cleared. The previous
        contents could be anything. If the previous contents held a floating
        point number, interpreting it as an integer would likely not be
        useful. Even if it contained an integer, it would not likely be the
        right integer. Thus, its contents are said to hold garbage.

While a pointer may be used without being initialized, it may not
      always work properly until it has been initialized.

How to Read a Declaration



Now is a good time to suggest a way to read pointer
      declarations, which can make them easier to understand. The trick is to
      read them backward. While we haven’t discussed pointers to constants
      yet, let’s examine the following declaration:
   const int *pci;
Reading the declaration backward allows us to progressively
      understand the declaration (Figure 1-3).
[image: The backward declaration]

Figure 1-3. The backward declaration

Many programmers find that reading the declaration backward is
      less complex.
Note
When working with complex pointer expressions, draw a picture of
        them, as we will do in many of our examples.


Address of Operator



The address of operator, &, will
      return its operand’s address. We can initialize the pi pointer with the address of num using this operator as follows:
   num = 0;
   pi = &num;
The variable num is set to
      zero, and pi is set to point to the
      address of num as illustrated in
      Figure 1-4.
[image: Memory assignments]

Figure 1-4. Memory assignments

We could have initialized pi to
      point to the address of num when the
      variables were declared as illustrated below:
   int num;
   int *pi = &num;
Using these declarations, the following statement will result in a
      syntax error on most compilers:
   num = 0;
   pi = num;
The error would appear as follows:
error: invalid conversion from 'int' to 'int*'
The variable pi is of type
      pointer to an integer and num is of
      type integer. The error message is saying we cannot convert an integer
      to a pointer to the data type integer.
Note
Assignment of integers to a pointer will generally cause a
        warning or error.

Pointers and integers are not the same. They may both be stored
      using the same number of bytes on most machines, but they are not the
      same. However, it is possible to cast an integer to a pointer to an
      integer:
   pi = (int *)num;
This will not generate a syntax error. When executed, though, the program may terminate abnormally
      when the program attempts to dereference the value at address zero. An
      address of zero is not always valid for use in a program on most
      operating systems. We will discuss this in more detail in the section
      The Concept of Null.
Note
It is a good practice to initialize a pointer as soon as
        possible, as illustrated below:
   int num;
   int *pi;
   pi = &num;


Displaying Pointer Values



Rarely will the variables we use actually have an address such as
      100 and 104. However, the variable’s address can be determined by
      printing it out as follows:
   int num = 0;
   int *pi = &num;

   printf("Address of num: %d  Value: %d\n",&num, num);
   printf("Address of pi: %d  Value: %d\n",&pi, pi);
When executed, you may get output as follows. We used real
      addresses in this example. Your addresses will probably be
      different:
Address of num: 4520836  Value: 0
Address of pi: 4520824  Value: 4520836
The printf function has a
      couple of other field specifiers useful when displaying pointer values,
      as summarized in Table 1-2.
Table 1-2. Field specifiers
	Specifier	Meaning
	%x	Displays the value as a hexadecimal number.
	%o	Displays the value as an octal number.
	%p	Displays the value in an implementation-specific manner;
              typically as a hexadecimal number.



Their use is demonstrated below:
   printf("Address of pi: %d  Value: %d\n",&pi, pi);
   printf("Address of pi: %x  Value: %x\n",&pi, pi);
   printf("Address of pi: %o  Value: %o\n",&pi, pi);
   printf("Address of pi: %p  Value: %p\n",&pi, pi);
This will display the address and contents of pi, as shown below. In this case, pi holds the address of num:
Address of pi: 4520824  Value: 4520836
Address of pi: 44fb78  Value: 44fb84
Address of pi: 21175570  Value: 21175604
Address of pi: 0044FB78  Value: 0044FB84
The %p specifier differs from
      %x as it typically displays the
      hexadecimal number in uppercase. We will use the %p specifier for addresses unless otherwise
      indicated.
Displaying pointer values consistently on different platforms can
      be challenging. One approach is to cast the pointer as a pointer to void
      and then display it using the %p
      format specifier as follows:
   printf("Value of pi: %p\n", (void*)pi);
Pointers to void is explained in Pointer to void. To keep our examples simple, we will
      use the %p specifier and not cast the
      address to a pointer to void.
Virtual memory and pointers



To further complicate displaying addresses, the pointer
        addresses displayed on a virtual operating
        system are not likely to be the real physical memory
        addresses. A virtual operating system allows a program to be split
        across the machine’s physical address space. An application is split
        into pages/frames. These pages represent areas of main memory. The
        pages of the application are allocated to different, potentially
        noncontiguous areas of memory and may not all be in memory at the same
        time. If the operating system needs memory currently held by a page,
        the memory may be swapped out to secondary storage and then reloaded
        at a later time, frequently at a different memory location. These
        capabilities provide a virtual operating system with considerable
        flexibility in how it manages memory.
Each program assumes it has access to the machine’s entire
        physical memory space. In reality, it does not. The address used by a
        program is a virtual address. The operating system maps the virtual
        address to a real physical memory address when needed.
This means code and data in a page may be in different physical
        locations as the program executes. The application’s virtual addresses
        do not change; they are the addresses we see when we examine the
        contents of a pointer. The virtual addresses are transparently mapped
        to real addresses by the operating system.
The operating system handles all of this, and it is not
        something that the programmer has control over or needs to worry
        about. Understanding these issues explains the addresses returned by a
        program running in a virtual operating system.


Dereferencing a Pointer Using the Indirection Operator



The indirection operator, *, returns the value pointed to by
      a pointer variable. This is frequently referred to as dereferencing a
      pointer. In the following example, num and pi
      are declared and initialized:
   int num = 5;
   int *pi = &num;
The indirection operator is then used in the following statement
      to display 5, the value of num:
  printf("%p\n",*pi);   // Displays 5
We can also use the result of the dereference operator as an
      lvalue. The term lvalue refers to the operand
      found on the left side of the assignment operator. All lvalues must be modifiable since they are
      being assigned a value.
The following will assign 200 to the integer pointed to by
      pi. Since it is pointing to the
      variable num, 200 will be assigned to
      num. Figure 1-5 illustrates how
      memory is affected:
   *pi = 200;
   printf("%d\n",num);   // Displays 200
[image: Memory assigned using dereference operator]

Figure 1-5. Memory assigned using dereference operator


Pointers to Functions



A pointer can be declared to point to a function. The
      declaration notation is a bit cryptic. The following illustrates how to
      declare a pointer to a function. The function is passed void and returns
      void. The pointer’s name is foo:
  void (*foo)();
A pointer to a function is a rich topic area
      and will be covered in more detail in Chapter 3.

The Concept of Null



The concept of null is interesting and sometimes misunderstood.
      Confusion can occur because we often deal with several similar, yet
      distinct concepts, including:
	The null concept

	The null pointer constant

	The NULL macro

	The ASCII NUL

	A null string

	The null statement



When NULL is assigned to a
      pointer, it means the pointer does not point to anything. The null
      concept refers to the idea that a pointer can hold a special value that
      is not equal to another pointer. It does not point to any area of
      memory. Two null pointers will always be equal to each other. There can
      be a null pointer type for each pointer type, such as a pointer to a
      character or a pointer to an integer, although this is uncommon.
The null concept is an abstraction supported by the null pointer
      constant. This constant may or may not be a constant zero. A C
      programmer need not be concerned with their actual internal
      representation.
The NULL macro is a constant integer zero cast to a pointer
      to void. In many libraries, it is defined as follows:
#define NULL    ((void *)0)
This is what we typically think of as a null pointer. Its
      definition frequently can be found within several different header
      files, including stddef.h,
      stdlib.h, and stdio.h.
If a nonzero bit pattern is used by the compiler to represent
      null, then it is the compiler’s responsibility to ensure all uses of
      NULL or 0 in a pointer context are
      treated as null pointers. The actual internal representation of null is
      implementation-defined. The use of NULL and 0 are language-level symbols that
      represent a null pointer.
The ASCII NUL is defined
      as a byte containing all zeros. However, this is not the same as a null
      pointer. A string in C is represented as a sequence of characters
      terminated by a zero value. The null string is an empty string and does
      not contain any characters. Finally, the null statement consists of a
      statement with a single semicolon.
As we will see, a null pointer is a very useful feature for many
      data structure implementations, such as a linked list where it is often
      used to mark the end of the list.
If the intent was to assign the null value to pi, we use the NULL type as follows:
   pi = NULL;
Note
A null pointer and an uninitialized pointer are different. An
        uninitialized pointer can contain any value, whereas a pointer
        containing NULL does not reference any location in memory.

Interestingly, we can assign a zero to a pointer, but we cannot assign
      any other integer value. Consider the following assignment
      operations:
   pi = 0;
   pi = NULL;
   pi = 100;   // Syntax error
   pi = num;   // Syntax error
A pointer can be used as the sole operand of a logical expression.
      For example, we can test to see whether the pointer is set to NULL using the following sequence:
   if(pi) {
      // Not NULL
   } else {
      // Is NULL
   }
Note
Either of the two following expressions are valid but are
        redundant. It may be clearer, but explicit comparison to NULL is not
        necessary.

If pi has been assigned a
      NULL value in this context, then it
      will be interpreted as the binary zero. Since this represents false in
      C, the else clause will be executed if pi contains NULL.
if(pi == NULL) ...
if(pi != NULL) ...
Note
A null pointer should never be dereferenced because it
        does not contain a valid address. When executed it will result in the program
        terminating.

To NULL or not to NULL



Which  is better form: using NULL or using 0 when working with pointers?
        Either is perfectly acceptable; the choice is one of preference. Some
        developers prefer to use NULL
        because it is a reminder that we are working with pointers. Others
        feel this is unnecessary because the zero is simply hidden.
However, NULL should not be
        used in contexts other than pointers. It might work some of the time,
        but it is not intended to be used this way. It can definitely be a problem when used in place of the
        ASCII NUL character. This character
        is not defined in any standard C header file. It is equivalent to the
        character literal, '\0', which evaluates to the
        decimal value zero.
The meaning of zero changes depending on its context. It
        might mean the integer zero in some contexts, and it might mean a null
        pointer in a different context. Consider the following example:
   int num;
   int *pi = 0;   // Zero refers to the null pointer,NULL
   pi = &num;
   *pi = 0;        // Zero refers to the integer zero
We are accustomed to overloaded operators, such as the asterisk
        used to declare a pointer, to dereference a pointer, or to multiply.
        The zero is also overloaded. We may find this discomforting because we
        are not used to overloading operands.

Pointer to void



A pointer to void is a general-purpose pointer used to
        hold references to any data type. An example of a pointer to void is
        shown below:
   void *pv;
It has two interesting properties:
	A pointer to void will have the same representation and
            memory alignment as a pointer to char.



	A pointer to void will never be equal to another pointer.
            However, two void pointers assigned a NULL value will be equal.



Any pointer can be assigned to a pointer to void. It can then be
        cast back to its original pointer type. When this happens the value
        will be equal to the original pointer value. This is illustrated in
        the following sequence, where a pointer to int is assigned to a pointer to void and
        then back to a pointer to int:
   int num;
   int *pi = &num;
   printf("Value of pi: %p\n", pi);
   void* pv = pi;
   pi = (int*) pv;
   printf("Value of pi: %p\n", pi);
When this sequence is executed as shown below, the pointer
        address is the same:
Value of pi: 100
Value of pi: 100
Pointers to void are used for data pointers, not function
        pointers. In Polymorphism in C, we will
        reexamine the use of pointers to void to address polymorphic
        behavior.
Note
Be careful when using pointers to void. If you cast an
          arbitrary pointer to a pointer to void, there is nothing preventing
          you from casting it to a different pointer type.

The sizeof operator can
        be used with a pointer to void. However, we cannot use the operator
        with void as shown below:
   size_t size = sizeof(void*);   // Legal
   size_t size = sizeof(void);    // Illegal
The size_t is a data type used for sizes and
        is discussed in the section Predefined Pointer-Related Types.

Global and static pointers



If a pointer is declared as global or static, it is
        initialized to NULL when the
        program starts. An example of a global and static pointer
        follows:
int *globalpi;

void foo() {
   static int *staticpi;
   ...
}

int main() {
   ...
}
Figure 1-6 illustrates this memory layout. Stack
        frames are pushed onto the stack, and the heap is used for dynamic
        memory allocation. The region above the heap is used for static/global
        variables. This is a conceptual diagram only. Static and global
        variables are frequently placed in a data segment separate from the
        data segment used by the stack and heap. The stack and heap are
        discussed in Program Stack and Heap.
[image: Memory allocation for global and static pointers]

Figure 1-6. Memory allocation for global and static pointers




Pointer Size and Types



Pointer size is an issue when we become concerned about application
    compatibility and portability. On most modern platforms, the size of a
    pointer to data is normally the same regardless of the pointer type. A
    pointer to a char has the same size as
    a pointer to a structure. While the C standard does not dictate that size
    be the same for all data types, this is usually the case. However, the
    size of a pointer to a function may be different from the size of a
    pointer to data.
The size of a pointer depends on the machine in use and the
    compiler. For example, on modern versions of Windows the pointer is 32 or
    64 bits in length. For DOS and Windows 3.1 operating systems, pointers
    were 16 or 32 bits in length.
Memory Models



The introduction of 64-bit machines has made more apparent
      the differences in the size of memory allocated for data types. With
      different machines and compilers come different options for allocating
      space to C primitive data types. A common notation used to describe
      different data models is summarized below:
I In L Ln LL LLn P Pn
Each capital letter corresponds to an integer, long, or pointer.
      The lowercase letters represent the number of bits allocated for the
      data type. Table 1-3[1] summarizes these models, where the number is the size in
      bits:
Table 1-3. Machine memory models
	C Data Type	LP64	ILP64	LLP64	ILP32	LP32
	char	8	8	8	8	8
	short	16	16	16	16	16
	_int32	 	32	 	 	 
	int	32	64	32	32	16
	long	64	64	32	32	32
	long long	 	 	64	 	 
	pointer	64	64	64	32	32



The model depends on the operating system and compiler. More than
      one model may be supported on the same operating system; this is often
      controlled through compiler options.

Predefined Pointer-Related Types



Four predefined types are frequently used when working
      with pointers. They include:
	size_t
	Created to provide a safe type for sizes

	ptrdiff_t
	Created to handle pointer arithmetic

	intptr_t and uintprt_t
	Used for storing pointer addresses



In the following sections, we will illustrate the use of each type
      with the exception of ptrdiff_t,
      which will be discussed in the section Subtracting two pointers.
Understanding size_t



The type size_t
        represents the maximum size any object can be in C. It is an unsigned
        integer since negative numbers do not make sense in this context. Its
        purpose is to provide a portable means of declaring a size consistent
        with the addressable area of memory available on a system. The
        size_t type is used as the return
        type for the sizeof operator and as
        the argument to many functions, including malloc and strlen, among others.
Note
It is good practice to use size_t when declaring variables for sizes
          such as the number of characters and array indexes. It should be
          used for loop counters, indexing into arrays, and sometimes for
          pointer arithmetic.

The declaration of size_t is
        implementation-specific. It is found in one or more standard headers, such as
        stdio.h and stdlib.h, and it is typically defined as
        follows:
#ifndef __SIZE_T
#define __SIZE_T
typedef unsigned int size_t;
#endif
The define directives ensure it is only defined once. The actual
        size will depend on the implementation. Typically, on a 32-bit system,
        it will be 32 bits in length, while on a 64-bit system it will be 64
        bits in length. Normally, the maximum possible value for size_t is SIZE_MAX.
Warning
Usually size_t can be used
          to store a pointer, but it is not a good idea to assume size_t is the same size as a pointer. As
          we will see in Using the sizeof operator with pointers, intptr_t is a better choice.

Be careful when printing values defined as size_t. These are unsigned values, and if
        you choose the wrong format specifier, you’ll get unreliable results.
        The recommended format specifier
        is %zu. However, this is not always
        available. As an alternative, consider using %u or %lu.
Consider the following example, where we define a variable as a
        size_t and then display it using
        two different format specifiers:
   size_t sizet = -5;
   printf("%d\n",sizet);
   printf("%zu\n",sizet);
Since a variable of type size_t is intended for use with positive
        integers, using a negative value can present problems. When we assign
        it a negative number and use the %d
        and then the %zu format specifiers,
        we get the following output:
-5
4294967291
The %d field interprets
        size_t as a signed integer. It
        displays a –5 because it holds a –5. The %zu field formats size_t as an unsigned integer. When –5 is
        interpreted as a signed integer, its high-order bit is set to one,
        indicating that the integer is negative. When interpreted as an
        unsigned number, the high-order bit is interpreted as a large power of
        2. This is why we saw the large integer when we used the %zu field specifier.
A positive number will be displayed properly as shown
        below:
   sizet = 5;
   printf("%d\n",sizet);    // Displays 5
   printf("%zu\n",sizet);   // Displays 5
Since size_t is unsigned,
        always assign a positive number to a variable of that type.

Using the sizeof operator with pointers



The sizeof operator can
        be used to determine the size of a pointer. The following displays the
        size of a pointer to char:
   printf("Size of *char: %d\n",sizeof(char*));
The output follows:
Size of *char: 4
Note
Always use the sizeof
          operator when the size of a pointer is needed.

The size of a function pointer can vary. Usually, it is
        consistent for a given operating system and compiler combination. Many
        compilers support the creation of a 32-bit or 64-bit application. It
        is possible that the same program, compiled with different options,
        will use different pointer sizes.
On a Harvard architecture, the code and data are stored in
        different physical memory. For example, the Intel MCS-51 (8051)
        microcontroller is a Harvard machine. Though Intel no longer
        manufactures the chip, there are many binary compatible derivatives
        available and in use today. The Small Device C
        Complier (SDCC) supports this type of processor. Pointers on
        this machine can range from 1 to 4 bytes in length. Thus, the size of
        a pointer should be determined when needed, as its size is not
        consistent in this type of environment.

Using intptr_t and uintptr_t



The types intptr_t and
        uintptr_t are used for storing
        pointer addresses. They provide a portable and safe way of declaring
        pointers, and will be the same size as the underlying pointer used on
        the system. They are useful for converting pointers to their integer
        representation.
The type uintptr_t is the
        unsigned version of intptr_t. For
        most operations intptr_t is
        preferred. The type uintptr_t is
        not as flexible as intptr_t. The
        following illustrates how to use intptr_t:
   int num;
   intptr_t *pi = &num;
If we try to assign the address of an integer to a pointer of
        type uintptr_t as follows, we will
        get a syntax error:
   uintptr_t *pu = &num;
The error follows:
error: invalid conversion from 'int*' to 
       'uintptr_t* {aka unsigned int*}' [-fpermissive]
However, performing the assignment using a cast will
        work:
   intptr_t *pi = &num;
   uintptr_t *pu = (uintptr_t*)&num;
We cannot use uintptr_t with
        other data types without casting:
   char c;
   uintptr_t *pc = (uintptr_t*)&c;
These types should be used when portability and safety are an
        issue. However, we will not use them in our examples to simplify their
        explanations.
Warning
Avoid casting a pointer to an integer. In the case of 64-bit
          pointers, information will be lost if the integer was only four
          bytes.

Note
Early Intel processors used a 16-bit segmented architecture
          where near and far pointers were relevant. In today’s virtual memory
          architecture, they are no longer a factor. The far and near pointers
          were extensions to the C standard to support segmented architecture
          on early Intel processors. Near pointers were only able to address
          about 64KB of memory at a time. Far pointers could address up to 1MB
          of memory but were slower than near pointers. Huge pointers were far pointers normalized so they used
          the highest possible segment for the address.




Pointer Operators



There are several operators available for use with pointers. So
    far we have examined the dereference and address-of operators. In this
    section, we will look closely into pointer arithmetic and comparisons.
    Table 1-4 summarizes the pointer operators.
Table 1-4. Pointer operators
	Operator	Name	Meaning
	*	 	Used to declare a pointer
	*	Dereference	Used to dereference a pointer
	->	Point-to	Used to access fields of a structure referenced by a
            pointer
	+	Addition	Used to increment a pointer
	-	Subtraction	Used to decrement a pointer
	== !=	Equality, inequality	Compares two pointers
	> >= < <=	Greater than, greater than or equal, less than, less than
            or equal	Compares two pointers
	(data type)	Cast	To change the type of pointer



Pointer Arithmetic



Several arithmetic operations are performed on pointers to data.
      These include:
	Adding an integer to a pointer

	Subtracting an integer from a pointer

	Subtracting two pointers from each other

	Comparing pointers



These operations are not always permitted on pointers to
      functions.
Adding an integer to a pointer



This operation is very common and useful. When we add an integer
        to a pointer, the amount added is the product of the integer times the
        number of bytes of the underlying data type.
The size of primitive data types can vary from system to system,
        as discussed in Memory Models. However, Table 1-5 shows the common sizes found in most systems.
        Unless otherwise noted, these values will be used for the examples in
        this book.
Table 1-5. Data type sizes
	Data Type	Size in Bytes
	byte	1
	char	1
	short	2
	int	4
	long	8
	float	4
	double	8



To illustrate the effects of adding an integer to a pointer, we
        will use an array of integers, as shown below. Each time one is added
        to pi, four is added to the address. The memory
        allocated for these variables is illustrated in Figure 1-7. Pointers are declared with data types so that
        these sorts of arithmetic operations are possible. Knowledge of the
        data type size allows the automatic adjustment of the pointer values
        in a portable fashion:
    int vector[] = {28, 41, 7};
    int *pi = vector;      // pi: 100
    
    printf("%d\n",*pi);    // Displays 28
    pi += 1;               // pi: 104
    printf("%d\n",*pi);    // Displays 41
    pi += 1;               // pi: 108
    printf("%d\n",*pi);    // Displays 7
Note
When an array name is used by itself, it returns the address
          of an array, which is also the address of the first element of the
          array:

[image: Memory allocation for vector]

Figure 1-7. Memory allocation for vector

In the following sequence, we add three to the pointer. The
        variable pi will contain the
        address 112, the address of pi:
    pi = vector;
    pi += 3;
The pointer is pointing to itself. This is not very useful but
        illustrates the need to be careful when performing pointer arithmetic.
        Accessing memory past the end of an array is a dangerous thing to do
        and should be avoided. There is no guarantee that the memory access
        will be a valid variable. It is very easy to compute an invalid or
        useless address.
The following declarations will be used to illustrate the
        addition operation performed with a short and then a char data type:
   short s;
   short *ps = &s;
   char c;
   char *pc = &c;
Let’s assume memory is allocated as shown in Figure 1-8. The addresses used here are all on a four-byte
        word boundary. Real addresses may be aligned on different boundaries
        and in a different order.
[image: Pointers to short and char]

Figure 1-8. Pointers to short and char

The following sequence adds one to each pointer and then
        displays their contents:
   printf("Content of ps before: %d\n",ps);
   ps = ps + 1;
   printf("Content of ps after:  %d\n",ps);

   printf("Content of pc before: %d\n",pc);
   pc = pc + 1;
   printf("Content of pc after:  %d\n",pc);
When executed, you should get output similar to the
        following:
Content of ps before: 120
Content of ps after:  122
Content of pc before: 128
Address of pc after:  129
The ps pointer is incremented
        by two because the size of a short
        is two bytes. The pc pointer is
        incremented by one because its size is one byte. Again, these
        addresses may not contain useful information.

Pointers to void and addition



Most compilers allow arithmetic to be performed on a pointer
        to void as an extension. Here we will assume the size of a pointer to
        void is four. However, trying to add one to a pointer to void may
        result in a syntax error. In the following code snippet, we declare
        and attempt to add one to the pointer:
   int num = 5;
   void *pv = &num;
   printf("%p\n",pv);
   pv = pv+1;        //Syntax warning
The resulting warning follows:
warning: pointer of type 'void *' used in arithmetic [-Wpointerarith]
Since this is not standard C, the compiler issued a warning.
        However, the resulting address contained in pv will be incremented by four bytes.

Subtracting an integer from a pointer



Integer values can be subtracted from a pointer in the same way
        they are added. The size of the data type times the integer increment
        value is subtracted from the address. To illustrate the effects of
        subtracting an integer from a pointer, we will use an array of
        integers as shown below. The memory created for these variables is
        illustrated in Figure 1-7.
    int vector[] = {28, 41, 7};
    int *pi = vector + 2;  // pi: 108
    
    printf("%d\n",*pi);    // Displays 7
    pi--;                  // pi: 104
    printf("%d\n",*pi);    // Displays 41
    pi--;                  // pi: 100
    printf("%d\n",*pi);    // Displays 28
Each time one is subtracted from pi, four is
        subtracted from the address.

Subtracting two pointers



When one pointer is subtracted from another, we get the
        difference between their addresses. This difference is not normally
        very useful except for determining the order of elements in an
        array.
The difference between the pointers is the number of “units” by
        which they differ. The difference’s sign depends on the order of the
        operands. This is consistent with pointer addition where the number
        added is the pointer’s data type size. We use “unit” as the operand.
        In the following example, we declare an array and pointers to the
        array’s elements. We then take their difference:
    int vector[] = {28, 41, 7};
    int *p0 = vector;
    int *p1 = vector+1;
    int *p2 = vector+2;
    
    printf("p2-p0:  %d\n",p2-p0);    // p2-p0:  2
    printf("p2-p1:  %d\n",p2-p1);    // p2-p1:  1
    printf("p0-p1:  %d\n",p0-p1);    // p0-p1:  -1
In the first printf
        statement, we find the difference between the positions of the array’s
        last element and its first element is 2. That is, their indexes differ
        by 2. In the last printf statement,
        the difference is a –1, indicating that p0 immediately precedes the element pointed
        to by p1. Figure 1-9 illustrates how memory is
        allocated for this example.
[image: Subtracting two pointers]

Figure 1-9. Subtracting two pointers

The type ptrdiff_t is a
        portable way to express the difference between two pointers. In the
        previous example, the result of subtracting two pointers is returned
        as a ptrdiff_t type. Since pointer
        sizes can differ, this type simplifies the task of working with their
        differences.
Don’t confuse this technique with using the dereference operator
        to subtract two numbers. In the following example, we use pointers to
        determine the difference between the value stored in the array’s first
        and second elements:
    printf("*p0-*p1:  %d\n",*p0-*p1);  //  *p0-*p1:  -13


Comparing Pointers



Pointers can be compared using the standard comparison operators.
      Normally, comparing pointers is not very useful. However, when comparing
      pointers to elements of an array, the comparison’s results can be used
      to determine the relative ordering of the array’s elements.
We will use the vector example developed in the section Subtracting two pointers to illustrate the comparison
      of pointers. Several comparison operators are applied to the pointers,
      and their results are displayed as 1 for true and 0 for false:
    int vector[] = {28, 41, 7};
    int *p0 = vector;
    int *p1 = vector+1;
    int *p2 = vector+2;
    
    printf("p2>p0:  %d\n",p2>p0);    // p2>p0:  1
    printf("p2<p0:  %d\n",p2<p0);    // p2<p0:  0
    printf("p0>p1:  %d\n",p0>p1);    // p0>p1:  0


Common Uses of Pointers



Pointers can be used in a variety of ways. In this section, we will
    examine different ways of using pointers, including:
	Multiple levels of indirection

	Constant pointers



Multiple Levels of Indirection



Pointers can use different levels of indirection. It is not
      uncommon to see a variable declared as a pointer to a pointer, sometimes
      called a double pointer. A good example of this
      is when program arguments are passed to the main function using the traditionally named
      argc and argv parameters. This is discussed in more
      detail in Chapter 5.
The example below uses three arrays. The first array is an array
      of strings used to hold a list of book titles:
    char *titles[] = {"A Tale of Two Cities",
           "Wuthering Heights","Don Quixote",
           "Odyssey","Moby-Dick","Hamlet",
           "Gulliver's Travels"};
Two additional arrays are provided whose purpose is to maintain a
      list of the “best books” and English books. Instead of holding copies of
      the titles, they will hold the address of a title in the titles array. Both arrays will need to be
      declared as a pointer to a pointer to a char. The
      array’s elements will hold the addresses of the titles array’s elements. This will avoid
      having to duplicate memory for each title and results in a single
      location for titles. If a title needs to be changed, then the change
      will only have to be performed in one location.
The two arrays are declared below. Each array element contains a
      pointer that points to a second pointer to char:
    char **bestBooks[3];
    char **englishBooks[4];
The two arrays are initialized and one of their elements is
      displayed, as shown below. In the assignment statements, the value of
      the righthand side is calculated by applying the subscripts first,
      followed by the address-of operator. For example, the second statement
      assigns the address of the fourth element of titles to the second element of bestBooks:
    bestBooks[0] = &titles[0];
    bestBooks[1] = &titles[3];
    bestBooks[2] = &titles[5];
    
    englishBooks[0] = &titles[0];
    englishBooks[1] = &titles[1];
    englishBooks[2] = &titles[5];
    englishBooks[3] = &titles[6];
    
    printf("%s\n",*englishBooks[1]);   // Wuthering Heights
Memory is allocated for this example as shown in Figure 1-10.
[image: Pointers to pointers]

Figure 1-10. Pointers to pointers

Using multiple levels of indirection provides additional
      flexibility in how code can be written and used. Certain types of
      operations would otherwise be more difficult. In this example, if the
      address of a title changes, it will only require modification to the
      title array. We
      would not have to modify the other arrays.
There is not an inherent limit on the number of levels of
      indirection possible. Of course, using too many levels of indirection
      can be confusing and hard to maintain.

Constants and Pointers



Using the const keyword with
      pointers is a rich and powerful aspect of C. It provides different types
      of protections for different problem sets. Of particular power and
      usefulness is a pointer to a constant. In Chapters 3
      and 5, we will see how this can protect
      users of a function from modification of a parameter by the
      function.
Pointers to a constant



A pointer can be defined to point to a constant. This
        means the pointer cannot be used to modify the value it is
        referencing. In the following example, an integer and an integer
        constant are declared. Next, a pointer to an integer and a pointer to
        an integer constant are declared and then initialized to the
        respective integers:
   int num = 5;
   const int limit = 500;
   int *pi;                // Pointer to an integer
   const int *pci;         // Pointer to a constant integer

   pi = &num;
   pci = &limit;
This is illustrated in Figure 1-11.
[image: Pointer to a constant integer]

Figure 1-11. Pointer to a constant integer

The following sequence will display the address and value of
        these variables:
   printf("  num - Address: %p  value: %d\n",&num, num);
   printf("limit - Address: %p  value: %d\n",&limit, limit);
   printf("   pi - Address: %p  value: %p\n",&pi, pi);
   printf("  pci - Address: %p  value: %p\n",&pci, pci);
When executed, this sequence will produce values similar to the
        following:
  num - Address: 100  value: 5
limit - Address: 104  value: 500
   pi - Address: 108  value: 100
  pci - Address: 112  value: 104
Dereferencing a constant pointer is fine if we are simply
        reading the integer’s value. Reading is a perfectly legitimate and
        necessary capability, as shown below:
   printf("%d\n", *pci);
We cannot dereference a constant pointer to change what the
        pointer references, but we can change the pointer. The pointer value
        is not constant. The pointer can be changed to reference another
        constant integer or a simple integer. Doing so will not be a problem.
        The declaration simply limits our ability to modify the referenced
        variable through the pointer.
This means the following assignment is legal:
   pci = &num;
We can dereference pci to
        read it; however, we cannot dereference it to modify it.
Consider the following assignment:
   *pci = 200;
This will result in the following syntax error:
'pci' : you cannot assign to a variable that is const
The pointer thinks it is pointing to a constant integer;
        therefore, it does allow the modification of the integer using the
        pointer. We can still modify num
        using its name. We just can’t use pci to modify it.
Conceptually, a constant pointer can also be visualized as shown
        in Figure 1-12. The clear boxes represent variables
        that can be changed. The shaded boxes represent variables that cannot
        be changed. The shaded box pointed to by pci cannot be changed using pci. The dashed line indicates that the
        pointer can reference that data type. In the previous example,
        pci pointed to limit.
[image: Pointer to a constant]

Figure 1-12. Pointer to a constant

The declaration of pci as a
        pointer to a constant integer means:
	pci can be assigned to
            point to different constant integers

	pci can be assigned to
            point to different nonconstant integers

	pci can be dereferenced
            for reading purposes

	pci cannot be
            dereferenced to change what it points to



Note
The order of the type and the const keyword is not important. The
          following are equivalent:
   const int *pci;
   int const *pci;


Constant pointers to nonconstants



We can also declare a constant pointer to a nonconstant.
        When we do this, it means that while the pointer cannot be changed,
        the data pointed to can be modified. An example of such a pointer
        follows:
   int num;
   int *const cpi = &num;
With this declaration:
	cpi must be initialized
            to a nonconstant variable

	cpi cannot be
            modified

	The data pointed to by cpi can be modified



Conceptually, this type of pointer can be visualized as shown in
        Figure 1-13.
[image: Constant pointers to nonconstants]

Figure 1-13. Constant pointers to nonconstants

It is possible to dereference cpi and assign a new value to whatever
        cpi is referencing. The following
        are two valid assignments:
   *cpi = limit;
   *cpi = 25;
However, if we attempt to initialize cpi to the constant limit as shown below, we will get a
        warning:
   const int limit = 500;
   int *const cpi = &limit;
The warning will appear as follows:
warning: initialization discards qualifiers from pointer target type
If cpi referenced the
        constant limit, the constant could
        be modified. This is not desirable. We generally prefer constants to
        remain constant.
Once an address has been assigned to cpi, we cannot assign a new value to
        cpi as shown below:
   int num;
   int age;
   int *const cpi = &num;
   cpi = &age;
The error message generated is shown below:
'cpi' : you cannot assign to a variable that is const

Constant pointers to constants



A constant pointer to a constant is an infrequently used
        pointer type. The pointer cannot be changed, and the data it points to
        cannot be changed through the pointer. An example of a constant
        pointer to a constant integer follows:
   const int * const cpci = &limit;
A constant pointer to a constant can be visualized as shown in
        Figure 1-14.
[image: Constant pointers to constants]

Figure 1-14. Constant pointers to constants

As with pointers to constants, it is not necessary to assign the
        address of a constant to cpci.
        Instead, we could have used num as
        shown below:
   int num;
   const int * const cpci = &num;
When the pointer is declared, we must initialize it. If we do
        not initialize it as shown below, we will get a syntax error:
   const int * const cpci;
The syntax error will be similar to the following:
'cpci' : const object must be initialized if not extern
Given a constant pointer to a constant we cannot:
	Modify the pointer

	Modify the data pointed to by the pointer



Trying to assign a new address to cpci will result in a syntax error:
   cpci = &num;
The syntax error follows:
'cpci' : you cannot assign to a variable that is const
If we try to dereference the pointer and assign a value as shown
        below, we will also get a syntax error:
   *cpci = 25;
The error generated will be similar to the following:
'cpci' : you cannot assign to a variable that is const
expression must be a modifiable lvalue
Constant pointers to constants are rare.

Pointer to (constant pointer to constant)



Pointers to constants can also have multiple levels of
        indirection. In the following example, we declare a pointer to the
        cpci pointer explained in the
        previous section. Reading complex declarations from right to left
        helps clarify these types of declarations:
   const int * const cpci = &limit;
   const int * const * pcpci;
A pointer to a constant pointer to a constant can be visualized
        as shown in Figure 1-15.
[image: Pointer to (constant pointer to constant)]

Figure 1-15. Pointer to (constant pointer to constant)

The following illustrates their use. The output of this sequence
        should display 500 twice:
   printf("%d\n",*cpci);
   pcpci = &cpci;
   printf("%d\n",**pcpci);
The following table summarizes the first four types of pointers
        discussed in the previous sections:
	Pointer Type	Pointer Modifiable	Data Pointed to Modifiable
	Pointer to a nonconstant	✓	✓
	Pointer to a constant	✓	X
	Constant pointer to a nonconstant	X	✓
	Constant pointer to a constant	X	X





Summary



In this chapter, we covered the essential aspects of pointers,
    including how to declare and use pointers in common situations. The
    interesting concept of null and its variations was covered, along with a
    number of pointer operators.
We found that the size of a pointer can vary, depending on the
    memory model supported by the target system and compiler. We also explored
    the use of the const keyword with
    pointers.
With this foundation, we are prepared to explore the other areas
    where pointers have proved to be quite useful. This includes their use as
    parameters to functions, in support of data structures, and in dynamically
    allocating memory. In addition, we will see the effect of their use in
    making applications more secure.



[1] Adapted from http://en.wikipedia.org/wiki/64-bit.


Chapter 2. Dynamic Memory Management in C



Much of the power of pointers stems from their ability to track
  dynamically allocated memory. The management of this memory through pointers
  forms the basis for many operations, including those used to manipulate
  complex data structures. To be able to fully exploit these capabilities, we
  need to understand how dynamic memory management occurs in C.
A C program executes within a runtime
  system. This is typically the environment provided by an
  operating system. The runtime system supports the stack and heap along with
  other program behavior.
Memory management is central to all programs. Sometimes memory is
  managed by the runtime system implicitly, such as when memory is allocated
  for automatic variables. In this case, variables are allocated to the
  enclosing function’s stack frame. In the case of static and global variables, memory is placed in
  the application’s data segment, where it is zeroed out. This is a separate
  area from executable code and other data managed by the runtime
  system.
The ability to allocate and then deallocate memory allows an
  application to manage its memory more efficiently and with greater
  flexibility. Instead of having to allocate memory to accommodate the largest
  possible size for a data structure, only the actual amount required needs to
  be allocated.
For example, arrays are fixed size in versions of C prior to C99. If
  we need to hold a variable number of elements, such as employee records, we
  would be forced to declare an array large enough to hold the maximum number
  of employees we believe would be needed. If we underestimate the size, we
  are forced to either recompile the application with a larger size or to take
  other approaches. If we overestimate the size, then we will waste space. The
  ability to dynamically allocate memory also helps when dealing with data
  structures using a variable number of elements, such as a linked list or a
  queue.
Note
C99 introduced Variable Length Arrays (VLAs). The array’s size is
    determined at runtime and not at compile time. However, once created,
    arrays still do not change size.

Languages such as C also support dynamic memory management where
  objects are allocated memory from the heap. This is done manually using
  functions to allocate and deallocate memory. The process is referred to as
  dynamic memory management.
We start this chapter with a quick overview of how memory is allocated
  and freed. Next, we present basic allocation functions such as malloc and realloc. The free function is discussed, including the use of
  NULL along with such problems as double free.
Dangling pointers are a common problem. We will present examples to
  illustrate when dangling pointers occur and techniques to handle the
  problem. The last section presents alternate techniques for managing memory.
  Improper use of pointers can result in unpredictable behavior. By this we
  mean the program can produce invalid results, corrupt data, or possibly
  terminate the program.
Dynamic Memory Allocation



The basic steps used for dynamic memory allocation in C
    are:
	Use a malloc type function to
        allocate memory

	Use this memory to support the application

	Deallocate the memory using the free function



While there are some minor variations to this approach, this is
    the most common technique. In the following example, we allocate memory
    for an integer using the malloc
    function. The pointer assigns five to the allocated memory, and then the
    memory is released using the free
    function:
    int *pi = (int*) malloc(sizeof(int));
    *pi = 5;
    printf("*pi: %d\n", *pi);
    free(pi);
When this sequence is executed, it will display the number 5. Figure 2-1 illustrates how memory is
    allocated right before the free
    function is executed. For the purposes of this chapter, we will assume
    that the example code is found in the main function unless otherwise noted.
[image: Allocating memory for an integer]

Figure 2-1. Allocating memory for an integer

The malloc function single
    argument specifies the number of bytes to allocate. If successful, it
    returns a pointer to memory allocated from the heap. If it fails, it
    returns a null pointer. Testing the validity of an allocated pointer is
    discussed in Using the malloc Function.
    The sizeof operator makes
    the application more portable and determines the correct number of bytes
    to allocate for the host system.
In this example, we are trying to allocate enough memory for an
    integer. If we assume its size is 4, we can use:
    int *pi = (int*) malloc(4));
However, the size of an integer can vary, depending on the memory
    model used. A portable approach is to use the sizeof operator. This will return the correct
    size regardless of where the program is executing.
Note
A common error involving the dereference operator is
      demonstrated below:
    int *pi;
    *pi = (int*) malloc(sizeof(int));
The problem is with the lefthand side of the assignment operation.
      We are dereferencing the pointer. This will assign the address returned
      by malloc to the address stored in
      pi. If this is the first time an
      assignment is made to the pointer, then the address contained in the
      pointer is probably invalid. The correct approach is shown below:
pi = (int*) malloc(sizeof(int));
The dereference operator should not be used in this
      situation.

The free function, also
    discussed in more detail later, works in conjunction with malloc to deallocate the
    memory when it is no longer needed.
Note
Each time the malloc function
      (or similar function) is called, a corresponding call to the free function must be made when the
      application is done with the memory to avoid memory leaks.

Once memory has been freed, it should not be accessed again.
    Normally, you would not intentionally access it after it had been
    deallocated. However, this can occur accidentally, as illustrated in the
    section Dangling Pointers. The system behaves in an
    implementation-dependent manner when this happens. A common practice is to
    always assign NULL to a freed pointer,
    as discussed in Assigning NULL to a Freed Pointer.
When memory is allocated, additional information is stored as part
    of a data structure maintained by the heap manager. This information
    includes, among other things, the block’s size, and is typically placed
    immediately adjacent to the allocated block. If the application writes outside of this block of memory,
    then the data structure can be corrupted. This can lead to strange program behavior or corruption of the
    heap, as we will see in Chapter 7.
Consider the following code sequence. Memory is allocated for a
    string, allowing it to hold up to five characters plus the byte for the
    NUL termination character. The
    for loop writes zeros to each location but does not
    stop after writing six bytes. The for statement’s
    terminal condition requires that it write eight bytes. The zeros being
    written are binary zeros and not the ASCII value for the character
    zero:
    char *pc = (char*) malloc(6);
    for(int i=0; i<8; i++) {
        *pc[i] = 0;
    }
In Figure 2-2, extra memory
    has been allocated at the end of the six-byte string. This represents the
    extra memory used by the heap manager to keep track of the memory
    allocation. If we write past the end of the string, this extra memory will
    be corrupted. The extra memory is shown following the string in this
    example. However, its actual placement and its original content depend on
    the compiler.
[image: Extra memory used by heap manager]

Figure 2-2. Extra memory used by heap manager

Memory Leaks



A memory leak occurs when allocated memory is never used
      again but is not freed. This can happen when:
	The memory’s address is lost

	The free function is never
          invoked though it should be (sometimes called a hidden leak)



A problem with memory leaks is that the memory cannot be reclaimed
      and used later. The amount of memory available to the heap manager is
      decreased. If memory is repeatedly allocated and then lost,
      then the program may terminate when more memory is needed but
      malloc cannot allocate it because it
      ran out of memory. In extreme cases, the operating system may
      crash.
This is illustrated in the following simple example:
    char *chunk;
    while (1) {
        chunk = (char*) malloc(1000000);
        printf("Allocating\n");
    }
The variable chunk is assigned
      memory from the heap. However, this memory is not freed before another
      block of memory is assigned to it. Eventually, the application will run
      out of memory and terminate abnormally. At minimum, memory is not being
      used efficiently.
Losing the address



An example of losing the address of memory is illustrated
        in the following code sequence where pi is reassigned a new address. The address
        of the first allocation of memory is lost when pi is allocated memory a second time.
    int *pi = (int*) malloc(sizeof(int)); 
    *pi = 5;
    ...
    pi = (int*) malloc(sizeof(int));
This is illustrated in Figure 2-3 where
        the before and after images refer to the program’s state before and
        after the second malloc’s
        execution. The memory at address 500 has not been released, and the
        program no longer holds this address anywhere.
[image: Losing an address]

Figure 2-3. Losing an address

Another example allocates memory for a string, initializes it,
        and then displays the string character by character:
    char *name = (char*)malloc(strlen("Susan")+1);
    strcpy(name,"Susan");
    while(*name != 0) {
        printf("%c",*name);
        name++;
    }
However, it increments name
        by one with each loop iteration. At the end, name is left pointing to the string’s
        NUL termination character, as
        illustrated in Figure 2-4. The
        allocated memory’s starting
        address has been lost.
[image: Losing address of dynamically allocated memory]

Figure 2-4. Losing address of dynamically allocated memory


Hidden memory leaks



Memory leaks can also occur when the program should release
        memory but does not. A hidden memory leak occurs when an object is
        kept in the heap even though the object is no longer needed. This is
        frequently the result of programmer oversight. The primary problem
        with this type of leak is that the object is using memory that is no
        longer needed and should be returned to the heap. In the worst case,
        the heap manager may not be able to allocate memory when requested,
        possibly forcing the program to terminate. At best, we are
        holding unneeded memory.
Memory leaks can also occur when freeing structures created
        using the struct keyword. If the
        structure contains pointers to dynamically allocated memory, then
        these pointers may need to be freed before the structure is freed. An
        example of this is found in Chapter 6.



Dynamic Memory Allocation Functions



Several memory allocation functions are available to manage dynamic
    memory. While what is available may be system dependent, the following
    functions are found on most systems in the stdlib.h header file:
	malloc

	realloc

	calloc

	free



The functions are summarized in Table 2-1.
Table 2-1. Dynamic memory allocation functions
	Function	Description
	malloc	Allocates memory from the heap
	realloc	Reallocates memory to a larger or smaller amount based on a
            previously allocated block of memory
	calloc	Allocates and zeros out memory from the heap
	free	Returns a block of memory to the heap



Dynamic memory is allocated from the heap. With successive memory
    allocation calls, there is no guarantee regarding the order of the memory
    or the continuity of memory allocated. However, the memory allocated will
    be aligned according to the pointer’s data type. For example, a four-byte
    integer would be allocated on an address boundary evenly divisible by
    four. The address returned by the heap manager will contain the lowest
    byte’s address.
In Figure 2-3, the malloc function allocates four bytes at address
    500. The second use of the malloc
    function allocates memory at address 600. They both are on four-byte
    address boundaries, and they did not allocate memory from consecutive
    memory locations.
Using the malloc Function



The function malloc allocates a
      block of memory from the heap. The number of bytes allocated is
      specified by its single argument. Its return type is a pointer to void.
      If memory is not available, NULL is
      returned. The function does not clear or otherwise modify the memory,
      thus the contents of memory should be treated as if it contained
      garbage. The function’s prototype follows:
   void*  malloc(size_t);
The function possesses a single argument of type size_t. This type is discussed in Chapter 1. You need to be careful when passing
      variables to this function, as problems can arise if the argument is a
      negative number. On some systems, a NULL value is returned if the
      argument is negative.
When malloc is used with an
      argument of zero, its behavior is implementation-specific. It may return
      a pointer to NULL or it may return a
      pointer to a region with zero bytes allocated. If the malloc function is used with a NULL argument, then it will normally generate
      a warning and execute returning zero bytes.
The following shows a typical use of the malloc function:
    int *pi = (int*) malloc(sizeof(int));
The following steps are performed when the malloc function is executed:
	Memory is allocated from the heap

	The memory is not modified or otherwise
          cleared

	The first byte’s address is returned



Note
Since the malloc function may
        return a NULL value if it is unable to allocate memory, it is a good
        practice to check for a NULL value before using the pointer as
        follows:
   int *pi = (int*) malloc(sizeof(int));
   if(pi != NULL) {
      // Pointer should be good
   } else {
      // Bad pointer
   }

To cast or not to cast



Before the pointer to void was introduced to C, explicit casts
        were required with malloc to stop the generation of
        warnings when assignments were made between incompatible pointer
        types. Since a pointer to void can be assigned to any other pointer
        type, explicit casting is no longer required. Some developers consider
        explicit casts to be a good practice because:
	They document the intention of the malloc function

	They make the code compatible with C++ (or earlier C
            compiler), which require explicit casts



Using casts will be a problem if you fail to include the header
        file for malloc. The compiler may
        generate warnings. By default, C assumes functions return an integer.
        If you fail to include a prototype for malloc, it will complain when you try to
        assign an integer to a pointer.

Failing to allocate memory



If you declare a pointer but fail to allocate memory to the
        address it points to before using it, that memory will usually contain
        garbage, resulting typically in an invalid memory reference. Consider
        the following code sequence:
    int *pi;
    ...
    printf("%d\n",*pi);
The allocation of memory is shown in Figure 2-5.
        This issue is covered in more detail in Chapter 7.
[image: Failure to allocate memory]

Figure 2-5. Failure to allocate memory

When executed, this can result in a runtime exception. This type
        of problem is common with strings, as shown below:
    char *name;
    printf("Enter a name: ");
    scanf("%s",name);
While it may seem like this would execute correctly, we are
        using memory referenced by name.
        However, this memory has not been allocated. This problem can be
        illustrated graphically by changing the variable, pi, in Figure 2-5 to name.

Not using the right size for the malloc function



The malloc function allocates
        the number of bytes specified by its argument. You need to be careful
        when using the function to allocate the correct number of bytes. For
        example, if we want to allocate space for 10 doubles, then we need to
        allocate 80 bytes. This is achieved as shown below:
   double *pd = (double*)malloc(NUMBER_OF_DOUBLES * sizeof(double));
Note
Use the sizeof operator
          when specifying the number of bytes to allocate for data types
          whenever possible.

In the following example, an attempt is made to allocate memory
        for 10 doubles:
   const int NUMBER_OF_DOUBLES = 10;
   double *pd = (double*)malloc(NUMBER_OF_DOUBLES);
However, the code only allocated 10 bytes.

Determining the amount of memory allocated



There is no standard way to determine the total amount of
        memory allocated by the heap. However, some compilers provide
        extensions for this purpose. In addition, there is no standard way of
        determining the size of a memory block allocated by the heap
        manager.
For example, if we allocate 64 bytes for a string, the heap
        manager will allocate additional memory to manage this block. The
        total size allocated, and the amount used by the heap manager, is the
        sum of these two quantities. This was illustrated in Figure 2-2.
The maximum size that can be allocated with malloc is system dependent. It would seem
        like this size should be limited by size_t. However, limitations can be imposed
        by the amount of physical memory present and other operating system
        constraints.
When malloc executes, it is
        supposed to allocate the amount of memory requested and then return
        the memory’s address. What happens if the underlying operating system
        uses “lazy initialization” where it does not actually allocate the
        memory until it is accessed? A problem can arise at this point if
        there is not enough memory available to allocate. The answer depends
        on the runtime and operating systems. A typical developer normally
        would not need to deal with this question because such initialization
        schemes are quite rare.

Using malloc with static and global pointers



You cannot use a function call when initializing a static or
        global variable. In the following code sequence, we declare a static
        variable and then attempt to initialize it using malloc:
    static int *pi = malloc(sizeof(int));
This will generate a compile-time error message. The same thing
        happens with global variables but can be avoided for static variables
        by using a separate statement to allocate memory to the variable as
        follows. We cannot use a separate assignment statement with global
        variables because global variables are declared outside of a function
        and executable code, such as the assignment statement, must be inside
        of a function:
    static int *pi;
    pi = malloc(sizeof(int));
Note
From the compiler standpoint, there is a difference
          between using the initialization operator, =, and using the
          assignment operator, =.



Using the calloc Function



The calloc function will
      allocate and clear memory at the same time. Its prototype
      follows:
   void *calloc(size_t numElements, size_t elementSize);
Note
To clear memory means its contents are set to all binary
        zeros.

The function will allocate memory determined by the product of the
      numElements and elementSize parameters. A pointer is returned
      to the first byte of memory. If the function is unable to allocate
      memory, NULL is returned. Originally,
      this function was used to aid in the allocation of memory for
      arrays.
If either numElements or
      elementSize is zero, then a null
      pointer may be returned. If calloc is
      unable to allocate memory, a null pointer is returned and the global
      variable, errno, is set to ENOMEM (out of memory). This is a POSIX error code and may not be available on
      all systems.
Consider the following example where pi is allocated a total of 20 bytes, all
      containing zeros:
    int *pi = calloc(5,sizeof(int));
Instead of using  calloc, the malloc function along with the memset function can be used to achieve the
      same results, as shown below:
    int *pi = malloc(5 * sizeof(int));
    memset(pi, 0, 5* sizeof(int));
Note
The memset function will fill
        a block with a value. The first argument is a pointer to the buffer to
        fill. The second is the value used to fill the buffer, and the last
        argument is the number of bytes to be set.

Use calloc when memory needs to
      be zeroed out. However, the execution of calloc may take longer than using malloc.
Note
The function cfree is no
        longer needed. In the early days of C it was used to free memory
        allocated by calloc.


Using the realloc Function



Periodically, it may be necessary to increase or decrease the amount of
      memory allocated to a pointer. This is particularly useful when a
      variable size array is needed, as will be demonstrated in Chapter 4. The realloc function will reallocate memory. Its
      prototype follows:
void *realloc(void *ptr, size_t size);
The function realloc returns a
      pointer to a block of memory. The function takes two arguments. The
      first is a pointer to the original block, and the second is the
      requested size. The reallocated block’s size will be different from the
      size of the block referenced by the first argument. The return value is
      a pointer to the reallocated memory.
The requested size may be smaller or larger than the currently
      allocated amount. If the size is less than what is currently allocated,
      then the excess memory is returned to the heap. There is no guarantee
      that the excess memory will be cleared. If the size is greater than what
      is currently allocated, then if possible, the memory will be allocated
      from the region immediately following the current allocation. Otherwise,
      memory is allocated from a different region of the heap and the old
      memory is copied to the new region.
If the size is zero and the pointer is not null, then the pointer
      will be freed. If space cannot be allocated, then the original block of
      memory is retained and is not changed. However, the pointer returned is
      a null pointer and the errno is set
      to ENOMEM.
The function’s behavior is summarized in Table 2-2.
Table 2-2. Behavior of realloc function
	First Parameter	Second Parameter	Behavior
	null	NA	Same as malloc
	Not null	0	Original block is freed
	Not null	Less than the original block’s size	A smaller block is allocated using the current
              block
	Not null	Larger than the original block’s size	A larger block is allocated either from the current
              location or another region of the heap



In the following example, we use two variables to allocate memory
      for a string. Initially, we allocate 16 bytes but only use the first 13
      bytes (12 hexadecimal digits and the null termination character
      (0)):
    char *string1;
    char *string2;
    string1 = (char*) malloc(16);
    strcpy(string1, "0123456789AB");
Next, we use the realloc
      function to specify a smaller region of memory. The address and contents
      of these two variables are then displayed:
    string2 = realloc(string1, 8);
    printf("string1  Value: %p [%s]\n", string1, string1);
    printf("string2  Value: %p [%s]\n", string2, string2);
The output follows:
string1  Value: 0x500 [0123456789AB]
string2  Value: 0x500 [0123456789AB]
The allocation of memory is illustrated in Figure 2-6.
[image: realloc example]

Figure 2-6. realloc example

The heap manager was able to reuse the original block, and it did
      not modify its contents. However, the program continued to use more than
      the eight bytes requested. That is, we did not change the string to fit
      into the eight-byte block. In this example, we should have adjusted the
      length of the string so that it fits into the eight reallocated bytes.
      The simplest way of doing this is to assign a NUL character to address 507. Using more space
      than allocated is not a good practice and should be avoided, as detailed
      in Chapter 7.
In this next example, we will reallocate additional memory:
    string1 = (char*) malloc(16);
    strcpy(string1, "0123456789AB");
    string2 = realloc(string1, 64);
    printf("string1  Value: %p [%s]\n", string1, string1);
    printf("string2  Value: %p [%s]\n", string2, string2);
When executed, you may get results similar to the
      following:
string1  Value: 0x500 [0123456789AB]
string2  Value: 0x600 [0123456789AB]
In this example, realloc had to
      allocate a new block of memory. Figure 2-7 illustrates the allocation of
      memory.
[image: Allocating additional memory]

Figure 2-7. Allocating additional memory


The alloca Function and Variable Length Arrays



The alloca function
      (Microsoft’s malloca) allocates
      memory by placing it in the stack frame for the function. When the function returns,
      the memory is automatically freed. This function can be difficult to
      implement if the underlying runtime system is not stack-based. As a
      result, this function is nonstandard and should be avoided if the
      application needs to be
      portable.
In C99, Variable Length Arrays (VLAs) were introduced,
      allowing the declaration and creation of an array within a function
      whose size is based on a variable. In the following example, an array of
      char is allocated for use in a
      function:
void compute(int size) {
    char* buffer[size];
    ...
}
This means the allocation of memory is done at runtime and memory
      is allocated as part of the stack frame. Also, when the sizeof operator is used with the array, it
      will be executed at runtime rather than compile time.
A small runtime penalty will be imposed. Also, when the function
      exits, the memory is effectively deallocated. Since we did not use a
      malloc type function to create it, we
      should not use the free function to
      deallocate it. The function should not return a pointer to this memory
      either. This issue is addressed in Chapter 5.
Note
VLAs do not change size. Their size is fixed once they are
        allocated. If you need an array whose size actually changes, then an
        approach such as using the realloc
        function, as discussed in the section Using the realloc Function, is needed.



Deallocating Memory Using the free Function



With dynamic memory allocation, the programmer is able to return
    memory when it is no longer being used, thus freeing it up for other uses.
    This is normally performed using the free function, whose prototype is shown
    below:
   void free(void *ptr);
The pointer argument should contain the address of memory allocated
    by a malloc type function. This memory
    is returned to the heap. While the pointer may still point to the region,
    always assume it points to garbage. This region may be reallocated later
    and populated with different data.
In the simple example below, pi
    is allocated memory and is eventually freed:
    int *pi = (int*) malloc(sizeof(int));
    ...
    free(pi);
Figure 2-8 illustrates
    the allocation of memory immediately before and right after the free function executes. The dashed box at
    address 500 that indicates the memory has been freed but still may contain
    its value. The variable pi still
    contains the address 500. This is called a dangling pointer and is
    discussed in detail in the section Dangling Pointers.
[image: Release of memory using free]

Figure 2-8. Release of memory using free

If the free function is passed a
    null pointer, then it normally does nothing. If the pointer passed has
    been allocated by other than a malloc
    type function, then the function’s behavior is undefined. In the following
    example, pi is allocated the address of
    num. However, this is not a valid heap
    address:
   int num;
   int *pi = &num;
   free(pi);  // Undefined behavior
Note
Manage memory allocation/deallocation at the same level. For
      example, if a pointer is allocated within a function, deallocate it in
      the same function.

Assigning NULL to a Freed Pointer



Pointers can cause problems even after they have been freed. If we
      try to dereference a freed pointer, its behavior is undefined. As a
      result, some programmers will explicitly assign NULL to a pointer to designate the pointer as
      invalid. Subsequent use of such a pointer will result in a runtime
      exception.
An example of this approach follows:
    int *pi = (int*) malloc(sizeof(int));
    ...
    free(pi);
    pi = NULL;
The allocation of memory is illustrated in Figure 2-9.
[image: Assigning NULL after using free]

Figure 2-9. Assigning NULL after using free

This technique attempts to address problems like dangling
      pointers. However, it is better to spend time addressing the conditions
      that caused the problems rather than crudely catching them with a null
      pointer. In addition, you cannot assign NULL to a constant pointer except when it is
      initialized.

Double Free



The term double free refers to an
      attempt to free a block of memory twice. A simple example
      follows:
    int *pi = (int*) malloc(sizeof(int));
    *pi = 5;
    free(pi);
     ...
    free(pi);
The execution of the second free function will result in a runtime
      exception. A less obvious example involves the use of two pointers, both
      pointing to the same block of memory. As shown below, the same runtime
      exception will result when we accidentally try to free the same memory a
      second time:
    p1 = (int*) malloc(sizeof(int));
    int *p2 = p1;
    free(p1);
    ...
    free(p2);
This allocation of memory is illustrated in Figure 2-10.
Note
When two pointers reference the same location, it is referred to
        as aliasing. This concept is discussed in Chapter 8.

[image: Double free]

Figure 2-10. Double free

Unfortunately, heap managers have a difficult time determining
      whether a block has already been deallocated. Thus, they don’t attempt
      to detect the same memory being freed twice. This normally results in a corrupt heap and program
      termination. Even if the program does not terminate, it represents
      questionable problem logic. There is no reason to free the same memory
      twice.
It has been suggested that the free function should assign a NULL or some other special value to its
      argument when it returns. However, since pointers are passed by value,
      the free function is unable to
      explicitly assign NULL to the
      pointer. This is explained in more detail in the section Passing a Pointer to a Pointer.

The Heap and System Memory



The heap typically uses operating system functions to manage
      its memory. The heap’s size may be fixed when the program is created, or
      it may be allowed to grow. However, the heap manager does not
      necessarily return memory to the operating system when the free function is called. The deallocated
      memory is simply made available for subsequent use by the application.
      Thus, when a program allocates and then frees up memory, the
      deallocation of memory is not normally reflected in the application’s
      memory usage as seen from the operating system perspective.

Freeing Memory upon Program Termination



The operating system is responsible for maintaining the
      resources of an application, including its memory. When an application
      terminates, it is the operating system’s responsibility to reallocate
      this memory for other applications. The state of the terminated
      application’s memory, corrupted or uncorrupted, is not an issue. In
      fact, one of the reasons an application may terminate is because its
      memory is corrupted. With an abnormal program termination, cleanup may
      not be possible. Thus, there is no reason to free allocated memory
      before the application terminates.
With this said, there may be other reasons why this memory should
      be freed. The conscientious programmer may want to free memory as a
      quality issue. It is always a good habit to free memory after it is no
      longer needed, even if the application is terminating. If you use a tool
      to detect memory leaks or similar problems, then deallocating memory
      will clean up the output of such tools. In some less complex operating
      systems, the operating system may not reclaim memory automatically, and
      it may be the program’s responsibility to reclaim memory before
      terminating. Also, a later version of the application could add code
      toward the end of the program. If the previous memory has not been
      freed, problems could arise.
Thus, ensuring that all memory is free before program
      termination:
	May be more trouble than it’s worth

	Can be time consuming and complicated for the deallocation of
          complex structures

	Can add to the application’s size

	Results in longer running time

	Introduces the opportunity for more programming errors



Whether memory should be deallocated prior to program termination
      is application-specific.


Dangling Pointers



If a pointer still references the original memory after it has
    been freed, it is called a dangling pointer. The pointer does not point to
    a valid object. This is sometimes referred to as a premature free.
The use of dangling pointers can result in a number of different
    types of problems, including:
	Unpredictable behavior if the memory is accessed

	Segmentation faults when the memory is no
        longer accessible

	Potential security risks



These types of problems can result when:
	Memory is accessed after it has been freed

	A pointer is returned to an automatic variable in a previous
        function call (discussed in the section Pointers to Local Data)



Dangling Pointer Examples



Below is a simple example where we allocate memory for an integer
      using the malloc function. Next, the
      memory is released using the free
      function:
    int *pi = (int*) malloc(sizeof(int));
    *pi = 5;
    printf("*pi: %d\n", *pi);
    free(pi);
The variable pi will still hold
      the integer’s address. However, this memory may be reused by the heap
      manager and may hold data other than an integer. Figure 2-11 illustrates the program’s state immediately before
      and after the free function is
      executed. The pi variable is assumed
      to be part of the main function and
      is located at address 100. The memory allocated using malloc is found at address 500.
When the free function is
      executed, the memory at address 500 has been deallocated and should not
      be used. However, most runtime systems will not prevent subsequent
      access or modification. We may still attempt to write to the location as
      shown below. The result of this action is unpredictable.
    free(pi);
    *pi = 10;
[image: Dangling pointer]

Figure 2-11. Dangling pointer

A more insidious example occurs when more than one pointer
      references the same area of memory and one of them is freed. As shown
      below, p1 and p2 both refer to the same area of memory,
      which is called pointer aliasing. However, p1 is freed:
    int *p1 = (int*) malloc(sizeof(int));
    *p1 = 5;
    ...
    int *p2;
    p2 = p1;
    ...
    free(p1);
    ...
    *p2 = 10;   // Dangling pointer
Figure 2-12 illustrates the allocation of memory
      where the dotted box represents freed memory.
[image: Dangling pointer with aliased pointers]

Figure 2-12. Dangling pointer with aliased pointers

A subtle problem can occur when using block statements, as shown
      below. Here pi is assigned the
      address of tmp. The variable pi may be a global variable or a local
      variable. However, when tmp’s
      enclosing block is popped off of the program stack, the address is no
      longer valid:
   int *pi;
   ...
   {
      int tmp = 5;
      pi = &tmp;
   }
   // pi is now a dangling pointer
   foo();
Most compilers will treat a block statement as a stack frame.
      The variable tmp was allocated on the
      stack frame and subsequently popped off the stack when the block
      statement was exited. The pointer pi
      is now left pointing to a region of memory that may eventually be
      overridden by a different activation record, such as the function
      foo. This condition is illustrated in
      Figure 2-13.
[image: Block statement problem]

Figure 2-13. Block statement problem


Dealing with Dangling Pointers



Debugging pointer-induced problems can be difficult to resolve at
      times. Several approaches exist for dealing with dangling pointers,
      including:
	Setting a pointer to NULL
          after freeing it. Its subsequent use will terminate the application.
          However, problems can still persist if multiple copies of the
          pointer exist. This is because the assignment will only affect one
          of the copies, as illustrated in the section Double Free.

	Writing special functions to replace the free function (see Writing your own free function).

	Some systems (runtime/debugger) will overwrite data when it is
          freed (e.g., 0xDEADBEEF - Visual Studio will use 0xCC, 0xCD, or
          0xDD, depending on what is freed). While no exceptions are thrown,
          when the programmer sees memory containing these values where they
          are not expected, he knows that the program may be accessing freed
          memory.

	Use third-party tools to detect dangling pointers and other
          problems.



Displaying pointer values can be helpful in debugging dangling
      pointers, but you need to be careful how they are displayed. We have
      already discussed how to display pointer values in Displaying Pointer Values. Make sure you display them
      consistently to avoid confusion when comparing pointer values. The
      assert macro can also be useful, as
      demonstrated in Dealing with Uninitialized Pointers.

Debug Version Support for Detecting Memory Leaks



Microsoft provides techniques for addressing overwriting of
      dynamically allocated memory and memory leaks. This approach uses
      special memory management techniques in debug versions of a program
      to:
	Check the heap’s integrity

	Check for memory leaks

	Simulate low heap memory situations



Microsoft does this by using a special data structure to manage
      memory allocation. This structure maintains debug information, such as
      the filename and line number where malloc is called. In addition, buffers are
      allocated before and after the actual memory allocation to detect
      overwriting of the actual memory. More information about this technique
      can be found at Microsoft Developer
      Network.
The Mudflap
      Libraries provide a similar capability for the GCC compiler. Its
      runtime library supports the detection of memory leaks, among other
      things. This detection is accomplished by instrumenting the pointer
      dereferencing operations.


Dynamic Memory Allocation Technologies



So far, we have talked about the heap manager’s allocating and
    deallocating memory. However, the implementation of this technology can
    vary by compiler. Most heap managers use a heap or data segment as the
    source for memory. However, this approach is subject to fragmentation and
    may collide with the program stack. Nevertheless, it is the most common
    way of implementing the heap.
Heap managers need to address many issues, such as whether heaps are
    allocated on a per process and/or per thread basis and how to protect the
    heap from security breaches.
There are a number of heap managers, including OpenBSD’s malloc,
    Hoard’s malloc, and TCMalloc developed by Google. The GNU C library
    allocator is based on the general-purpose allocator dlmalloc. It provides facilities for
    debugging and can help in tracking memory leaks. The dlmalloc’s logging
    feature tracks memory usage and memory transaction, among other
    actions.
A manual technique for managing the memory used for structures is
    presented in Avoiding malloc/free Overhead.
Garbage Collection in C



The malloc and free functions provide a way of manually
      allocating and deallocating memory. However, there are numerous issues
      regarding the use of manual memory management in C, such as performance,
      achieving good locality of reference, threading problems, and cleaning
      up memory gracefully.
Several nonstandard techniques can be used to address some of
      these issues, and this section explores some of them. A key feature of
      these techniques is the automatic deallocation of memory. When memory is
      no longer needed, it is collected and made available for use later in
      the program. The deallocated memory is referred to as garbage. Hence,
      the term garbage collection denotes the processing
      of this memory.
Garbage collection is useful for a number of reasons,
      including:
	Freeing the programmer from having to decide when to
          deallocate memory

	Allowing the programmer to focus on the application’s
          problem



One alternative to manual memory management is the Boehm-Weiser
      Collector. However, this is not part of the language.

Resource Acquisition Is Initialization



Resource Acquisition Is Initialization (RAII) is a technique
      invented by Bjarne Stroustrup. It
      addresses the allocation and deallocation of resources in C++. The
      technique is useful for guaranteeing the allocation and subsequent
      deallocation of a resource in the presence of exceptions. Allocated
      resources will eventually be released.
There have been several approaches for using RAII in C. The GNU
      compiler provides a nonstandard extension to support this. We will
      illustrate this extension by showing how memory can be allocated and
      then freed within a function. When the variable goes out of scope, the
      deallocation process occurs automatically.
The GNU extension uses a macro called RAII_VARIABLE. It declares a variable and
      associates with the
      variable:
	A type

	A function to execute when the variable is created

	A function to execute when the variable goes out of
          scope



The macro is shown below:
#define RAII_VARIABLE(vartype,varname,initval,dtor) \
    void _dtor_ ## varname (vartype * v) { dtor(*v); } \
    vartype varname __attribute__((cleanup(_dtor_ ## varname))) = (initval)
In the following example, we declare a variable called name as a pointer to char. When it is created, the malloc function is executed, allocating 32
      bytes to it. When the function is terminated, name goes out of scope and the free function is executed:
void raiiExample() {
    RAII_VARIABLE(char*, name, (char*)malloc(32), free);
    strcpy(name,"RAII Example");
    printf("%s\n",name);
}
When this function is executed, the string “RAII_Example” will be
      displayed.
Similar results can be
      achieved without using the GNU extension.

Using Exception Handlers



Another approach to deal with the deallocation of memory is to
      use exception handling. While
      exception handling is not a standard part of C, it can be useful if
      available and possible portability issues are not a concern.
      The following illustrates the approach using the Microsoft
      Visual Studio version of the C language.
Here the try block encloses any statements that might cause an
      exception to be thrown at runtime. The finally block will be executed
      regardless of whether an exception is thrown. The free function is guaranteed to be
      executed.
void exceptionExample() {
   int *pi = NULL;
   __try {
      pi = (int*)malloc(sizeof(int));
      *pi = 5;
      printf("%d\n",*pi);
   }
   __finally {
      free(pi);
   }
}
You can implement exception handling
      in C using several other approaches.


Summary



Dynamic memory allocation is a significant C language feature. In
    this chapter, we focused on the manual allocation of memory using the
    malloc and free functions. We addressed a number of common
    problems involving these functions, including the failure to allocate
    memory and dangling pointers.
There are other nonstandard techniques for managing dynamic memory
    in C. We touched on a few of these garbage collection techniques,
    including RAII and exception handling.

Chapter 3. Pointers and Functions



Pointers contribute immensely to a function’s capability. They allow
  data to be passed and modified by a function. Complex data can also be
  passed and returned from a function in the form of a pointer to a structure.
  When pointers hold the address of a function, they provide a means to
  dynamically control a program’s execution flow. In this chapter, we will
  explore the power of pointers as used with functions and learn how to use
  them to solve many real-world problems.
To understand functions and their use with pointers, a good
  understanding of the program stack is needed. The program stack is used by
  most modern block-structured languages, such as C, to support the execution
  of functions. When a function is invoked, its stack frame is created and
  then pushed onto the program stack. When the function returns, its stack
  frame is popped off of the program stack.
When working with functions, there are two areas where pointers become
  useful. The first is when we pass a pointer to a function. This allows the
  function to modify data referenced by the pointer and to pass blocks of
  information more efficiently.
The second area is declaring a pointer to a function. In essence,
  function notation is pointer notation. The function’s name evaluates to the
  address of the function, and the function’s parameters are passed to the
  function. As we will see, function pointers provide additional capability to
  control the execution flow of a program.
In this section, we will establish the foundation for understanding
  and working with functions and pointers. Because of the pervasiveness of
  functions and pointers, this foundation should serve you well.
Program Stack and Heap



The program stack and the heap are important runtime elements of C.
    In this section, we will carefully examine the structure and use of the
    program stack and heap. We will also look at the stack frame’s structure,
    which holds local variables.
Note
Local variables are also called automatic variables. They are
      always allocated to a stack
      frame.

Program Stack



The program stack is an area of memory that supports the
      execution of functions and is normally shared with the heap. That is,
      they share the same region of memory. The program stack tends to occupy
      the lower part of this region, while the heap uses the upper
      part.
The program stack holds stack
      frames, sometimes called activation
      records or activation frames. Stack
      frames hold the parameters and local variables of a function. The heap manages dynamic
      memory and is discussed in Dynamic Memory Allocation.
Figure 3-1 illustrates how the stack and heap
      are organized conceptually. This illustration is based on the following
      code sequence:
void function2() {
    Object *var1 = ...;
    int var2; 
    printf("Program Stack Example\n");
}

void function1() {  
    Object *var3 = ...;
    function2();
}

int main() {
    int var4;
    function1();
}
As functions are called, their stack frames are pushed onto the
      stack and the stack grows “upward.” When a function terminates, its
      stack frame is popped off the program stack. The memory used by the
      stack frame is not cleared and may eventually be overridden by another
      stack frame when it is pushed onto the program stack.
[image: Stack and heap]

Figure 3-1. Stack and heap

When memory is dynamically allocated, it comes from the heap,
      which tends to grow “downward.” The heap will fragment as memory is
      allocated and then deallocated. Although the heap tends to grow
      downward, this is a general direction. Memory can be allocated from
      anywhere within the heap.

Organization of a Stack Frame



A stack frame consists of several elements,
      including:
	Return address
	The address in the program where the function is to return
            upon completion

	Storage for local data
	Memory allocated for local variables

	Storage for parameters
	Memory allocated for the function’s parameters

	Stack and base pointers
	Pointers used by the runtime system to manage the
            stack



The typical C programmer will not be concerned about the stack and
      base pointers used in support of a stack frame. However, understanding
      what they are and how they are used provides a more in-depth
      understanding of the program stack.
A stack pointer usually points to the top of the stack. A stack
      base pointer (frame pointer) is often present and points to an address
      within the stack frame, such as the return address. This pointer assists
      in accessing the stack frame’s elements. Neither of these pointers are C
      pointers. They are addresses used by the runtime system to manage the
      program stack. If the runtime system is implemented in C, then these
      pointers may be real C pointers.
Consider the creation of a stack frame for the following function.
      This function has passed an array of integers and an integer
      representing the array’s size. Three printf statements are used to display the
      parameter’s and the local variable’s addresses:
float average(int *arr, int size) {
   int sum;
   printf("arr: %p\n",&arr);
   printf("size: %p\n",&size);
   printf("sum: %p\n",&sum); 
   
   for(int i=0; i<size; i++) {
       sum += arr[i];
   }
   return (sum * 1.0f) / size;
}
When executed, you get output similar to the following:
arr: 0x500
size: 0x504
sum: 0x480
The gap in the addresses between the parameters and the local
      variables is due to other elements of the stack frame used by the
      runtime system to manage the stack.
When the stack frame is created, the parameters are pushed
      onto the frame in the opposite order of their declaration, followed by
      the local variables. This is illustrated in Figure 3-2. In this case, size is pushed followed by arr. Typically, the return address for the
      function call is pushed next, followed by the local variables. They are
      pushed in the opposite order in which they were listed.
Conceptually, the stack in this example grows “up.” However, the
      stack frame’s parameters and local variables and new stack frames are
      added at lower memory addresses. The actual direction the stack grows is
      implementation-specific.
[image: Stack frame example]

Figure 3-2. Stack frame example

The variable i used in the
      for statement is not included as part of this stack
      frame. C treats block statements as “mini” functions and will push
      and pop them as appropriate. In this case, the block statement is pushed
      onto the program stack above the average stack frame when it is executed and
      then popped off when it is done.
While the precise addresses can vary, the order usually will not.
      This is important to understand, as it helps explain how memory is
      allocated and establishes the relative order of the parameters and
      variables. This can be useful when debugging pointer problems. If you
      are not aware of how the stack frame is allocated, the assignment of
      addresses may not make sense.
As stack frames are pushed onto the program stack, the
      system may run out of memory. This condition is called stack overflow
      and generally results in the program terminating abnormally.  Keep in mind that each thread is typically allocated its
      own program stack. This can lead to potential conflicts if one or more
      threads access the same object in memory. This will be
      addressed in Sharing Pointers Between Threads.


Passing and Returning by Pointer



In this section, we will examine the impact of passing and returning
    pointers to and from functions. Passing pointers allows the referenced
    object to be accessible in multiple functions without making the object
    global. This means that only those functions that need access to the
    object will get this access and that the object does not need to be
    duplicated.
If the data needs to be modified in a function, it needs to be
    passed by pointer. We can pass data by pointer and prohibit it from being
    modified by passing it as a pointer to a constant, as will be demonstrated
    in the section Passing a Pointer to a Constant. When
    the data is a pointer that needs to be modified, then we pass it as a
    pointer to a pointer. This topic is covered in Passing a Pointer to a Pointer.
Parameters, including pointers, are passed by value. That is, a copy of
    the argument is passed to the function. Passing a pointer to an argument
    can be efficient when dealing with large data structures. For example,
    consider a large structure that represents an employee. If we passed the
    entire structure to the function, then every byte of the structure would
    need to be copied, resulting in a slower program and in more space being
    used in the stack frame. Passing a pointer to the object means the object
    does have to be copied, and we can access the object through the
    pointer.
Passing Data Using a Pointer



One of the primary reasons for passing data using a pointer is to
      allow the function to modify the data. The following sequence implements
      a swap function that will interchange the values referenced by its
      parameters. This is a common operation found in a number of sorting
      algorithms. Here, we use integer pointers and dereference them to affect
      the swap operation:
void swapWithPointers(int* pnum1, int* pnum2) {
    int tmp;
    tmp = *pnum1;
    *pnum1 = *pnum2;
    *pnum2 = tmp;
}
The following code sequence demonstrates this function:
int main() {
    int n1 = 5;
    int n2 = 10;
    swapWithPointers(&n1, &n2);
    return 0;
}
The pointers pnum1 and pnum2 are dereferenced during the swap
      operation. This will result in the values of n1 and n2
      being modified. Figure 3-3 illustrates how
      memory is organized. The Before image
      shows the program stack at the beginning of the swap function, and the
      After image shows it just before the
      function returns.
[image: Swapping with pointers]

Figure 3-3. Swapping with pointers


Passing Data by Value



If we do not pass them by pointers, then the swap operation
      will not occur. In the following function, the two integers are passed
      by value:
void swap(int num1, int num2) {
    int tmp;
    tmp = num1;
    num1 = num2;
    num2 = tmp;
}
In the following code sequence, two integers are passed to the
      function:
int main() {
    int n1 = 5;
    int n2 = 10;
    swap(n1, n2);
    return 0;
}
However, this will not work because the integers were passed by
      value and not by pointer. Only a copy of the arguments is stored in
      num1 and num2. If we modify num1, then the argument n1 is not changed. When we modify the
      parameters, we are not modifying the original arguments. Figure 3-4 illustrates how memory is allocated for the
      parameters.
[image: Pass by value]

Figure 3-4. Pass by value


Passing a Pointer to a Constant



Passing a pointer to constant is a common technique used in C. It
      is efficient, as we are only passing the address of the data and can
      avoid copying large amounts of memory in some cases. However, with a
      simple pointer, the data can be modified. When this is not desirable,
      then passing a pointer to a constant is the answer.
In this example, we pass a pointer to a constant integer and a
      pointer to an integer. Within the function, we cannot modify the value
      passed as a pointer to a constant:
void passingAddressOfConstants(const int* num1, int* num2) {
    *num2 = *num1;
}

int main() {
    const int limit = 100;
    int result = 5;
    passingAddressOfConstants(&limit, &result);
    return 0;
}
No syntax errors will be generated, and the function will assign
      100 to the variable result. In the
      following version of the function, we attempt to modify both referenced
      integers:
void passingAddressOfConstants(const int* num1, int* num2) {
    *num1 = 100;
    *num2 = 200;
}
This will cause a problem if we pass the constant limit to the function twice:
    const int limit = 100;
    passingAddressOfConstants(&limit, &limit);
This will generate syntax errors that complain of a type mismatch
      between the second parameter and its argument. In addition, it will
      complain that we are attempting to modify the presumed constant
      referenced by the first parameter.
The function expected a pointer to an integer, but a pointer to an
      integer constant was passed instead. We cannot pass the address of an
      integer constant to a pointer to a constant, as this would allow a
      constant value to be modified. This is detailed in the section Constants and Pointers.
An attempt to pass the address of an integer literal as shown
      below will also generate a syntax error:
    passingAddressOfConstants(&23, &23);
In this case, the error message will indicate that an lvalue is required as the address-of
      operator’s operand. The concept of an lvalue is discussed in Dereferencing a Pointer Using the Indirection Operator.

Returning a Pointer



Returning a pointer is easy to do. We simply declare the return
      type to be a pointer to the appropriate data type. If we need to return
      an object from a function, the following two techniques are frequently
      used:
	Allocate memory within the function using malloc and return its address. The caller
          is responsible for deallocating the memory returned.

	Pass an object to the function where it is modified. This
          makes the allocation and deallocation of the object’s memory the
          caller’s responsibility.



First, we will illustrate the use of malloc type functions to allocate the memory
      returned. This is followed by an example where we return a pointer to a
      local object. This latter approach is not recommended. The approach
      identified in the second bullet is then illustrated in the sectionPassing Null Pointers.
In the following example, we define a function that is passed the
      size of an integer array and a value to initialize each element. The
      function allocates memory for an integer array, initializes the array to
      the value passed, and then returns the array’s address:
int* allocateArray(int size, int value) {
    int* arr = (int*)malloc(size * sizeof(int));
    for(int i=0; i<size; i++) {
        arr[i] = value;
    }
    return arr; 
}
The following illustrates how this function can be used:
    int* vector = allocateArray(5,45);
    for(int i=0; i<5; i++) {
        printf("%d\n", vector[i]);
    }
Figure 3-5 illustrates how memory is
      allocated for this function. The Before image shows the program’s state right
      before the return statement is executed. The After image shows the program’s state after
      the function has returned. The variable vector now contains the address of the memory
      allocated in the function. While the arr variable went away when the function
      terminated, the memory referenced by the pointer does not go away. This
      memory will eventually need to be freed.
Although the previous example works correctly, several potential
      problems can occur when returning a pointer from a function,
      including:
	Returning an uninitialized pointer

	Returning a pointer to an invalid address

	Returning a pointer to a local variable

	Returning a pointer but failing to free it



The last problem is typified by the allocateArray function. Returning dynamically
      allocated memory from the function means the function’s caller is
      responsible for deallocating it. Consider the following example:
    int* vector = allocateArray(5,45);
    ...
    free(vector);
[image: Returning a pointer]

Figure 3-5. Returning a pointer


We must eventually free it once we are through using it. If
      we don’t, then we will have a memory leak.

Pointers to Local Data



Returning a pointer to local data is an easy mistake to make if you
      don’t understand how the program stack works. In the following example,
      we rework the allocateArray function
      used in the section Returning a Pointer. Instead
      of dynamically allocating memory for the array, we used a local
      array:
int* allocateArray(int size, int value) {
    int arr[size];
    for(int i=0; i<size; i++) {
        arr[i] = value;
    }
    return arr; 
}
Unfortunately, the address of the array returned is no longer
      valid once the function returns because the function’s stack frame is
      popped off the stack. While each array element may still contain a 45,
      these values may be overwritten if another function is called. This is
      illustrated with the following sequence. Here, the printf function is invoked repeatedly,
      resulting in corruption of the array:
    int* vector = allocateArray(5,45);
    for(int i=0; i<5; i++) {
        printf("%d\n", vector[i]);
    }
Figure 3-6 illustrates how
      memory is allocated when this happens. The dashed box shows where other
      stack frames, such as those used by the printf function, may be pushed onto the
      program stack, thus corrupting the memory held by the array. The actual
      contents of that stack frame are implementation-dependent.
[image: Returning a pointer to local data]

Figure 3-6. Returning a pointer to local data

An alternative approach is to declare the arr variable as static. This will restrict the
      variable’s scope to the function but allocate it outside of the stack
      frame, eliminating the possibility of another function overwriting the
      variable’s value:
int* allocateArray(int size, int value) {
    static int arr[5];
    ... 
}
However, this will not always work. Every time the allocateArray function is called, it will
      reuse the array. This effectively invalidates any previous calls to the
      function. In addition, the static array must be declared with a fixed
      size. This will limit the function’s ability to handle various array
      sizes.
If the function returns only a few possible values and it does not
      hurt to share them, then it can maintain a list of these values and
      return the appropriate one. This can be useful if we are returning a
      status type message, such as an error number that is not likely to be
      modified. In the section Returning Strings, an
      example of using global and static values is demonstrated.

Passing Null Pointers



In the following version of the allocateArray function, a pointer to an array
      is passed along with its size and a value that it will use to initialize
      each element of the array. The pointer is returned for convenience.
      Although this version of the function does not allocate memory, later
      versions will allocate memory:
int* allocateArray(int *arr, int size, int value) {
    if(arr != NULL) {
        for(int i=0; i<size; i++) {
            arr[i] = value;
        }
    }
    return arr;
}
When a pointer is passed to a function, it is always good practice
      to verify it is not null before using it.
The function can be invoked as follows:
    int* vector = (int*)malloc(5 * sizeof(int));
    allocateArray(vector,5,45);
If the pointer is NULL, then no action is performed and the
      program will execute without terminating abnormally.

Passing a Pointer to a Pointer



When a pointer is passed to a function, it is passed by value.
      If we want to modify the original pointer and not the copy of the
      pointer, we need to pass it as a pointer to a pointer. In the following
      example, a pointer to an integer array is passed, which will be assigned
      memory and initialized. The function will return the allocated memory
      back through the first parameter. In the function, we first allocate
      memory and then initialize it. The address of this allocated memory is
      intended to be assigned to a pointer to an int. To modify this pointer in the calling
      function, we need to pass the pointer’s address. Thus, the parameter is
      declared as a pointer to a pointer to an int. In the calling function, we need to pass
      the address of the pointer:
void allocateArray(int **arr, int size, int value) {
    *arr = (int*)malloc(size * sizeof(int));
    if(*arr != NULL) {
        for(int i=0; i<size; i++) {
            *(*arr+i) = value;
        }
    }
}
The function can be tested using the following code:
    int *vector = NULL;
    allocateArray(&vector,5,45);
The first parameter to allocateArray is passed as a pointer to a
      pointer to an integer. When we call the function, we need to pass a
      value of this type. This is done by passing the address of vector. The address returned by malloc is assigned to arr. Dereferencing a pointer to a pointer to
      an integer results in a pointer to an integer. Because this is the
      address of vector, we modify vector.
The memory allocation is illustrated in Figure 3-7. The Before image shows the stack’s state after
      malloc returns and the array is
      initialized. Likewise, the After
      image shows the stack’s state after the function returns.
Note
To easily identify problems such as memory leaks, draw a diagram
        of memory allocation.

[image: Passing a pointer to a pointer]

Figure 3-7. Passing a pointer to a pointer

The following version of the function illustrates why passing a
      simple pointer will not work:
void allocateArray(int *arr, int size, int value) {
    arr = (int*)malloc(size * sizeof(int));
    if(arr != NULL) {
        for(int i=0; i<size; i++) {
            arr[i] = value;
        }
    }
}
The following sequence illustrates using the function:
    int *vector = NULL;
    allocateArray(&vector,5,45);
    printf("%p\n",vector);
When the program is executed you will see 0x0 displayed because
      when vector is passed to the
      function, its value is copied into the parameter arr. Modifying arr has no effect on vector. When the function returns, the value
      stored in arr is not copied to
      vector. Figure 3-8 illustrates the allocation of memory. The
      Before malloc image shows the state
      of memory just before arr is assigned
      a new value. It contains the value of 500, which was passed to it from
      vector. The After malloc image shows the state of memory
      after the malloc function was
      executed in the allocateArray
      function and the array was initialized. The variable arr has been modified to point to a new place
      in the heap. The After return image
      shows the program stack’s state after the function returns. In addition,
      we have a memory leak because we have lost access to the block of memory
      at address 600.
[image: Passing pointers]

Figure 3-8. Passing pointers

Writing your own free function



Several issues surround the free function that encourage some
        programmers to create their own version of this function. The free function does not check the pointer
        passed to see whether it is NULL
        and does not set the pointer to NULL before it returns. Setting a pointer to
        NULL after freeing is a good
        practice.
Given the foundation provided in the section Passing and Returning by Pointer, the following
        illustrates one way of implementing your own free function that assigns a NULL value to
        the pointer. It requires that we use a pointer to a pointer:
void saferFree(void **pp) {
    if (pp != NULL && *pp != NULL) { 
        free(*pp);
        *pp = NULL;
    }
}
The saferFree function calls
        the free function that actually
        deallocates the memory. Its parameter is declared as a pointer to a
        pointer to void. Using a pointer to
        a pointer allows us to modify the pointer passed. Using the void type allows all types of pointers to be
        passed. However, we get a warning if we do not explicitly cast the
        pointer type to void when we call the function. If we explicitly
        perform the cast, then the warning goes away.
The safeFree macro, shown
        below, calls the saferFree function
        with this cast and uses the address-of operator, thus alleviating the
        need for a function’s user to perform the cast and to pass the
        pointer’s address.
#define safeFree(p) saferFree((void**)&(p))
The next sequence illustrates the use of this macro:
int main() {
    int *pi;
    pi = (int*) malloc(sizeof(int));
    *pi = 5;
    printf("Before: %p\n",pi);
    safeFree(pi);
    printf("After: %p\n",pi);
    safeFree(pi);
    return (EXIT_SUCCESS);
}
Assuming malloc returned
        memory from address 1000, the output of this sequence will be 1000 and
        then 0. The second use of the safeFree macro with a NULL value does not terminate the
        application, as the function detects and ignores it.



Function Pointers



A function pointer is a pointer that holds the address of a
    function. The ability of pointers to point to functions turns out to be an
    important and useful feature of C. This provides us with another way of
    executing functions in an order that may not be known at compile time and
    without using conditional statements.
One concern regarding the use of function pointers is a
    potentially slower running program. The processor may not be able to use
    branch prediction in conjunction with pipelining. Branch prediction is a
    technique whereby the processor will guess which multiple execution
    sequences will be executed. Pipelining is a hardware technology commonly
    used to improve processor performance and is achieved by overlapping
    instruction execution. In this scheme, the processor will start processing
    the branch it believes will be executed. If the processor successfully
    predicts the correct branch, then the instructions currently in the
    pipeline will not have to be discarded.
This slowdown may or may not be realized. The use of function
    pointers in situations such as table lookups can mitigate performance
    issues. In this section, we will learn how to declare function pointers,
    see how they can be used to support alternate execution paths, and explore
    techniques that exploit their potential.
Declaring Function Pointers



The syntax for declaring a pointer to a function can be
      confusing when you first see it. As with many aspects of C, once you get
      used to the notation, things start falling into place. Let’s start with
      a simple declaration. Below, we declare a pointer to a function that is
      passed void and returns void:
   void (*foo)();
This declaration looks a lot like a function prototype. If we
      removed the first set of parentheses, it would appear to be a function
      prototype for the function foo, which
      is passed void and returns a pointer to void. However, the parentheses
      make it a function pointer with a name of foo. The asterisk indicates that it is a
      pointer. Figure 3-9 highlights the
      parts of a function pointer declaration.
[image: Function pointer declaration]

Figure 3-9. Function pointer declaration

Note
When function pointers are used, the programmer must be careful
        to ensure it is used properly because C does not check to see whether
        the correct parameters are passed.

Other examples of function pointer declarations are illustrated
      below:
int (*f1)(double);       // Passed a double and 
                         //    returns an int
void (*f2)(char*);       // Passed a pointer to char and 
                         //    returns void
double* (*f3)(int, int); // Passed two integers and 
                         //    returns a pointer to a double
Note
One suggested naming convention for function pointers is to
        always begin their name with the prefix: fptr.

Do not confuse functions that return a
      pointer with function pointers. The following declares f4 as a function that returns a pointer to an
      integer, while f5 is a function
      pointer that returns an integer. The variable f6 is a function pointer that returns a
      pointer to an integer:
int  *f4();
int  (*f5)();
int* (*f6)();
The whitespace within these expressions can be rearranged so that
      it reads as follows:
int*  f4();
int (*f5)();
It is clear that f4 is a
      function that returns a pointer to an integer. However, using
      parentheses with f5 clearly bind the
      “pointer” asterisk to the function name, making it a function pointer.

Using a Function Pointer



Below is a simple example using a function pointer where a function
      is passed an integer and returns an integer. We also define a square function that squares an integer and
      then returns the square. To simplify these examples, we ignore the
      possibility of integer overflow.
int (*fptr1)(int);

int square(int num) {
    return num*num;
}
To use the function pointer to execute the square function, we need to assign the
      square function’s address to the
      function pointer, as shown below. As with array names, when we use the
      name of a function by itself, it returns the function’s address. We also
      declare an integer that we will pass to the function:
    int n = 5;
    fptr1 = square;
    printf("%d squared is %d\n",n, fptr1(n));
When executed it will display: “5 squared is 25.” We could have
      used the address-of operator with the function name as follows, but it
      is not necessary and is redundant. The compiler will effectively ignore
      the address-of operator when used in this context.
    fptr1 = &square;
Figure 3-10 illustrates how memory is
      allocated for this example. We have placed the square function below the program stack. This
      is for illustrative purposes only. Functions are allocated in a
      different segment than that used by the program stack. The function’s
      actual location is normally not of interest.
[image: Location of functions]

Figure 3-10. Location of functions

It is convenient to declare a type definition for function
      pointers. This is illustrated below for the previous function pointer.
      The type definition looks a little bit strange. Normally, the type
      definition’s name is the declaration’s last element:
typedef int (*funcptr)(int);

...

funcptr fptr2;
fptr2 = square;
printf("%d squared is %d\n",n, fptr2(n));
Function Pointers and Strings provides an
      interesting example with respect to using a function pointer to control
      how an array of strings is sorted.

Passing Function Pointers



Passing a function pointer is easy enough to do. Simply use a
      function pointer declaration as a parameter of a function. We will
      demonstrate passing a function pointer using add, sub,
      and compute functions as declared
      below:
int add(int num1, int num2) {
   return num1 + num2; 
}

int subtract(int num1, int num2) {
   return num1 - num2; 
}

typedef int (*fptrOperation)(int,int);

int compute(fptrOperation operation, int num1, int num2) {
    return operation(num1, num2);
}
The following sequence demonstrates these functions:
    printf("%d\n",compute(add,5,6));
    printf("%d\n",compute(sub,5,6));
The output will be an 11 and a –1. The add and sub
      function’s addresses were passed to the compute function. These addresses were then
      used to invoke the corresponding operation. This example also shows how
      code can be made more flexible through the use of function pointers.

Returning Function Pointers



Returning a function pointer requires declaring the function’s
      return type as a function pointer. To demonstrate how this is done, we
      will reuse the add and sub function along with the type definition we
      developed in the section Passing Function Pointers.
We will use the following select function to return a function pointer
      to an operation based in a character input. It will return a pointer to
      either the add function or the
      subtract function, depending on the
      opcode passed:
fptrOperation select(char opcode) {
    switch(opcode) {
        case '+': return add;
        case '-': return subtract;
    }
}
The evaluate function ties
      these functions together. The function is passed two integers and a
      character representing the operation to be performed. It passes the
      opcode to the select function, which returns a pointer to
      the function to execute. In the return statement, it executes this
      function and returns the result:
int evaluate(char opcode, int num1, int num2) {
    fptrOperation operation = select(opcode);
    return operation(num1, num2);
}
This function is demonstrated with the following printf statements:
   printf("%d\n",evaluate('+', 5, 6));
   printf("%d\n",evaluate('-', 5, 6));
The output will be an 11 and a –1.

Using an Array of Function Pointers



Arrays of function pointers can be used to select the function
      to evaluate on the basis of some criteria. Declaring such an array is
      straightforward. We simply use the function pointer declaration as the
      array’s type, as shown below. The array is also initialized to all
      NULLs. When a block of initialization
      values are used with an array, its values will be assigned to
      consecutive elements of the array. If the number of values is less than
      the size of the array, as in this example, the value is used to
      initialize every element of the array:
typedef int (*operation)(int, int);
operation operations[128] = {NULL};
Alternatively, we can declare this array without using a
      typedef as shown below:
int (*operations[128])(int, int) = {NULL};
The intent of this array is to allow a character index to select a
      corresponding function to execute. For example, the '*' character will
      identify the multiplication function if it exists. We can use character
      indexes because a character literal is an integer. The 128 elements
      corresponds to the first 128 ASCII characters. We will use this
      definition in conjunction with the add and subtract functions developed in the section
      Returning Function Pointers.
Having initialized the array to all NULLs, we then assign the add and subtract functions to the elements
      corresponding to the plus and minus signs:
void initializeOperationsArray() {
    operations['+'] = add;
    operations['-'] = subtract;
}
The previous evaluate function
      is rewritten as evaluateArray.
      Instead of calling the select
      function to obtain a function pointer, we used the operations with the operation character as an
      index:
int evaluateArray(char opcode, int num1, int num2) {
    fptrOperation operation;
    operation = operations[opcode];
    return operation(num1, num2);
}
Test the functions using the following sequence:
    initializeOperationsArray();
    printf("%d\n",evaluateArray('+', 5, 6));
    printf("%d\n",evaluateArray('-', 5, 6));
The results of executing this sequence are 11 and –1. A more
      robust version of the evaluateArray
      function would check for null function pointers before trying to execute
      the function.

Comparing Function Pointers



Function pointers can be compared to one another using the
      equality and inequality operators. In the following example, we use the
      fptrOperator type definition and the
      add function from the section Passing Function Pointers. The add function is assigned to the fptr1 function pointer and then compared
      against the add function’s
      address:
    fptrOperation fptr1 = add;

    if(fptr1 == add) {
        printf("fptr1 points to add function\n");
    } else {
        printf("fptr1 does not point to add function\n");
    }
When this is executed, the output will verify that the pointer
      does point to the add
      function.
A more realistic example of where the comparison of function
      pointers would be useful involves an array of function pointers that
      represent the steps of a task. For example, we may have a series of
      functions that manipulate an array of inventory parts. One set of
      operations may be to sort the parts, calculate a cumulative sum of their
      quantities, and then display the array and sum. A second set of
      operations may be to display the array, find the most expensive and the
      least expensive, and then display their difference. Each operation could
      be defined by an array of pointers to the individual functions. A log
      operation may be present in both lists. The ability to compare two
      function pointers would permit the dynamic modification of an operation
      by deleting the operation, such as logging, by finding and then removing
      the function from the list.

Casting Function Pointers



A pointer to one function can be cast to another type. This
      should be done with care since the runtime system does not verify that
      parameters used by a function pointer are correct. It is also possible
      to cast a function pointer to a different function pointer and then
      back. The resulting pointer will be equal to the original pointer. The
      size of function pointers used are not necessarily the same. The
      following sequence illustrates this operation:
    typedef int (*fptrToSingleInt)(int);
    typedef int (*fptrToTwoInts)(int,int);
    int add(int, int);
    
    fptrToTwoInts fptrFirst = add;
    fptrToSingleInt fptrSecond = (fptrToSingleInt)fptrFirst;
    fptrFirst = (fptrToTwoInts)fptrSecond;
    printf("%d\n",fptrFirst(5,6));
This sequence, when executed, will display 11 as its
      output.
Warning
Conversion between function pointers and pointers to data is not
        guaranteed to work.

The use of void* is not
      guaranteed to work with function pointers. That is, we should not assign
      a function pointer to void* as shown
      below:
    void* pv = add;
However, when interchanging function pointers, it is common to see
      a “base” function pointer type as declared below. This declares fptrBase as a function pointer to a function,
      which is passed void and returns void:
    typedef void (*fptrBase)();
The following sequence demonstrate the use of this base pointer,
      which duplicates the previous example:
    fptrBase basePointer;
    fptrFirst = add;
    basePointer = (fptrToSingleInt)fptrFirst;
    fptrFirst = (fptrToTwoInts)basePointer;
    printf("%d\n",fptrFirst(5,6));
A base pointer is used as a placeholder to exchange function
      pointer values.
Warning
Always make sure you use the correct argument list for function
        pointers. Failure to do so will result in indeterminate
        behavior.



Summary



Understanding the program stack and heap structures contributes to a
    more detailed and thorough understanding of how a program works and how
    pointers behave. In this chapter, we examined the stack, the heap, and the
    stack frame. These concepts help explain the mechanics of passing and
    returning pointers to and from a function.
For example, returning a pointer to a local variable is bad because
    the memory allocated to the local variable will be overwritten by
    subsequent function calls. Passing a pointer to constant data is efficient
    and prevents the function from modifying the data passed. Passing a
    pointer to a pointer allows the argument pointer to be reassigned to a
    different location in memory. The stack and heap helped detail and
    illustrate this functionality.
Function pointers were also introduced and explained. This type of
    pointer is useful for controlling the execution sequence within an
    application by allowing alternate functions to be executed based on the
    application’s needs.

Chapter 4. Pointers and Arrays



An array is a fundamental data structure built into C. A thorough
  understanding of arrays and their use is necessary to develop effective
  applications. Misunderstandings of array and pointer usage can result in
  hard-to-find errors and less than optimal performance in applications. Array
  and pointer notations are closely related to each other and can frequently
  be used interchangeably in the right context.
A common misconception is that an array and a pointer are
  completely interchangeable. An array name is not a pointer. Although an
  array name can be treated as a pointer at times, and array notation can be
  used with pointers, they are distinct and cannot always be used in place of
  each other. Understanding this difference will help you avoid incorrect use
  of these notations. For example, although the name of an array used by
  itself will return the array’s address, we cannot use the name by itself as
  the target of an assignment.
Arrays support many parts of an application and can be single or
  multidimensional. In this chapter, we will address the fundamental aspects
  of arrays as they relate to pointers to provide you with a deep
  understanding of arrays and the various ways they can be manipulated with
  pointers. You will see their use in more advanced contexts throughout the
  book.
We start with a quick review of arrays and then examine the
  similarities and differences between array and pointer notation. Arrays can
  be created using malloc type functions.
  These functions provide more flexibility than that afforded by traditional
  array declarations. We will see how the realloc function can be used to change the amount
  of memory allocated for an array.
Dynamically allocating memory for an array can present challenges,
  especially when we are dealing with arrays with two or more dimensions, as
  we have to ensure that the array is allocated in contiguous memory.
We will also explore problems that can occur when passing and
  returning arrays. In most situations, the array’s size must be passed so the
  array can be properly handled in a function. There is nothing inherent in an
  array’s internal representation that determines its length. If we do not
  pass the length, the function has no standard means of knowing where the
  array ends. We will also examine how to create jagged arrays in C, although
  they are infrequently used. A jagged array is a two-dimensional array where
  each row may have a different number of columns.
To demonstrate these concepts, we will use a vector for
  single-dimensional arrays and a matrix for two-dimensional arrays. Vectors
  and matrices have found extensive use in many areas, including analyzing
  electromagnetic fields, weather prediction, and in mathematics.
Quick Review of Arrays



An array is a contiguous collection of homogeneous elements that can
    be accessed using an index. By contiguous, we mean the elements of the
    array are adjacent to one another in memory with no gaps between them. By
    homogeneous, we mean they are all of the same type. Array declarations use
    a set of brackets and can possess multiple dimensions.
Two-dimensional arrays are common, and we typically use the terms
    rows and columns to describe the position
    of an array’s element. Arrays with three or more dimensions are not as
    common but can be quite useful in some applications. A two-dimensional array is not to be confused with an array
    of pointers. They are similar but behave slightly differently, as will be
    shown in the sectionUsing a One-Dimensional Array of Pointers.
Variable length arrays were introduced in C99 version of C.
    Previously, techniques using the realloc function were used to support arrays
    whose sizes change. We illustrate the realloc function in the section Using the realloc Function to Resize an Array.
Note
Arrays have a fixed size. When we declare an array, we need to
      decide how big it should be. If we specify too many elements, we waste
      space. If we specify too few elements, we limit how many elements we can
      process. The realloc function and
      variable length arrays provide techniques for dealing with arrays whose
      size needs to change. With a little work, we can resize an array and use
      just the right amount of memory.

One-Dimensional Arrays



A one-dimensional array is a linear structure. It uses a
      single index to access its members. The following is a declaration of a five-element array of
      integers:
   int vector[5];
Array indexes start with 0 and end at one less than their declared
      size. Valid indexes for the array vector start at 0 and end at 4. However, C
      does not enforce these bounds. Using an invalid index for an array can
      result in unpredictable behavior. Figure 4-1 illustrates how the array is
      allocated in memory. Each element is four bytes in length and is
      uninitialized. Depending on the memory model used, as explained in Memory Models, the size may be different.
[image: Array memory allocation]

Figure 4-1. Array memory allocation

The internal representation of an array has no information about
      the number of elements it contains. The array name simply references a
      block of memory. Using the sizeof operator
      with an array will return the number of bytes allocated to the array. To
      determine the number of elements, we divide the array’s size by its
      element’s size, as illustrated below. This will display 5:
    printf("%d\n", sizeof(vector)/sizeof(int));
One-dimensional arrays can be readily initialized using a block type
      statement. In the following sequence, each element is initialized to an
      integer starting at one:
    int vector[5] = {1, 2, 3, 4, 5};

Two-Dimensional Arrays



Two-dimensional arrays use rows and columns to identify array elements.
      This type of array needs to be mapped to the one-dimension address space
      of main memory. In C this is achieved by using a row-column ordering
      sequence. The array’s first row is placed in memory followed by the
      second row, then the third row, and this ordering continues until the
      last row is placed in memory.
The following declares a two-dimensional array with two rows
      and three columns. The array is initialized using a block statement.
      Figure 4-2 illustrates how memory
      is allocated for this array. The diagram on the left shows how memory is
      mapped. The diagram on the right shows how it can be viewed
      conceptually:
    int matrix[2][3] = {{1,2,3},{4,5,6}};
[image: Two-dimensional array]

Figure 4-2. Two-dimensional array

A two-dimensional array is treated as an array of arrays. That is,
      when we access the array using only one subscript, we get a pointer to
      the corresponding row. This is demonstrated in the following code
      sequence where each row’s address and size is displayed:
    for (int i = 0; i < 2; i++) {
        printf("&matrix[%d]: %p  sizeof(matrix[%d]): %d\n", 
                i, &matrix[i], i, sizeof(matrix[i]));
    }
The following output assumes the array is located at address
      100. The size is 12 because each row has three elements of four bytes
      each:
&matrix[0]: 100 sizeof(matrix[0]): 12
&matrix[1]: 112 sizeof(matrix[1]): 12
In the section Pointers and Multidimensional Arrays, we will examine
      this behavior in more detail.

Multidimensional Arrays



Multidimensional arrays have two or more dimensions. As with
      two-dimensional arrays, multiple sets of brackets define the array’s
      type and size. In the following example, we define a three-dimensional
      array consisting of three rows, two columns, and a rank of four. The
      term rank is often used to denote the elements of
      the third dimension:
    int arr3d[3][2][4] = {
        {{1, 2, 3, 4}, {5, 6, 7, 8}},
        {{9, 10, 11, 12}, {13, 14, 15, 16}},
        {{17, 18, 19, 20}, {21, 22, 23, 24}}
    };
The elements are allocated contiguously in row-column-rank order
      as illustrated in Figure 4-3.
[image: Three-dimensional array]

Figure 4-3. Three-dimensional array

We will use these declarations in later examples.


Pointer Notation and Arrays



Pointers can be very useful when working with arrays. We can use
    them with existing arrays or to allocate memory from the heap and then
    treat the memory as if it were an array. Array notation and pointer
    notation can be used somewhat interchangeably. However, they are not
    exactly the same as detailed in the section Differences Between Arrays and Pointers.
When an array name is used by itself, the array’s address is
    returned. We can assign this address to a pointer as illustrated
    below:
    int vector[5] = {1, 2, 3, 4, 5};
    int *pv = vector;
The variable pv is a pointer to
    the first element of the array and not the array itself. When we first
    assigned a value to pv, we assigned the
    address of the array’s first element.
We can use either the array name by itself or use the
    address-of operator with the array’s first element as illustrated below.
    These are equivalent and will return the address of vector. Using the address-of operator is more
    verbose but also more explicit:
    printf("%p\n",vector);
    printf("%p\n",&vector[0]);
The expression &vector is
    sometimes used to obtain the address of an array. It differs from the
    other notations in that it returns a pointer to the entire array. The
    other two approaches yield a pointer to an integer. Instead of returning a
    pointer to an integer, it returns a pointer to an array of integers. The
    use of this type will be illustrated in the section Passing a Multidimensional Array.
We can also use array subscripts with pointers. Effectively, the
    notation pv[i] is evaluated as:
   *(pv + i)
The pointer pv contains the
    address of a block of memory. The bracket notation will take the address
    contained in pv and adds the value
    contained in the index i using pointer
    arithmetic. This new address is then dereferenced to return its
    contents.
As we discussed in the section Pointer Arithmetic, adding an integer to a pointer will
    increment the address it holds by the product of the integer and the data
    type’s size. The same is true if we add an integer to the name of an
    array. The following two statements are equivalent:
   *(pv + i)
   *(vector + i)
Assume the vector is located at
    address 100 and pv is located at
    address 96. Table 4-1 and Figure 4-4 illustrate the use of array subscripts
    and pointer arithmetic with both the array name and the pointer for
    various values.
Table 4-1. Array/pointer notation
	Value	Equivalent Expression
	92	&vector[-2]	vector - 2	&pv[-2]	pv - 2
	100	vector	vector+0	&pv[0]	pv
	100	&vector[0]	vector+0	&pv[0]	pv
	104	&vector[1]	vector + 1	&pv[1]	pv + 1
	140	&vector[10]	vector + 10	&pv[10]	pv + 10



[image: Array/pointer notation]

Figure 4-4. Array/pointer notation

When we add 1 to the array address we effectively add 4, the size of
    an integer, to the address since this is an array of integers. With the
    first and last operations, we addressed locations outside the array’s
    bounds. While this is not a good practice, it does emphasize the need to
    be careful when using indexes or pointers to access elements of an
    array.
Array notation can be thought of as a “shift and dereference”
    operation. The expression vector[2]
    means start with vector, which is a pointer to the beginning of the array,
    shift two positions to the right, and then dereference that location to
    fetch its value. Using the address-of operator in conjunction with array
    notation, as in &vector[2],
    essentially cancels out the dereferencing. It can be interpreted as go
    left two positions and then return that address.
The following demonstrates the use of pointers in the implementation
    of the scalar addition operation. This operation takes a value and
    multiplies it against each element of the vector:
    pv = vector;
    int value = 3;
    for(int i=0; i<5; i++) {
        *pv++ *= value;
    }
Differences Between Arrays and Pointers



There are several differences between the use of arrays and the
      use of pointers to arrays. In this section, we will use the vector array and pv pointer as defined below:
    int vector[5] = {1, 2, 3, 4, 5};
    int *pv = vector;
The code generated by vector[i]
      is different from the code generated by vector+i. The notation vector[i] generates machine code that starts
      at location vector,
      moves i
      positions from this location, and uses its content. The notation
      vector+i generates machine code that
      starts at location vector,
      adds i to the
      address, and then uses the contents at that address. While the result is
      the same, the generated machine code is different. This difference is
      rarely of significance to most programmers.
There is a difference when the sizeof operator is applied to an array and to
      a pointer to the same array. Applying the sizeof operator to vector will return 20, the number of bytes
      allocated to the array. Applying the sizeof operator against pv will return 4, the pointer’s size.
The pointer pv is an
      lvalue. An lvalue denotes the term used on the lefthand
      side of an assignment operator. An lvalue must be capable of being modified. An
      array name such as vector is not an
      lvalue and cannot be modified. The
      address assigned to an array cannot be changed . A pointer can be
      assigned a new value and reference a different section of memory.
Consider the following:
    pv = pv + 1;
    vector = vector + 1; // Syntax error
We cannot modify vector, only
      its contents. However, the expression vector+1 is fine, as demonstrated below:
    pv = vector + 1;


Using malloc to Create a One-Dimensional Array



If we allocate memory from the heap and assign the address to a
    pointer, there is no reason we cannot use array subscripts with the
    pointer and treat this memory as an array. In the following sequence, we
    duplicate the contents of the vector
    array used earlier:
    int *pv = (int*) malloc(5 * sizeof(int));
    for(int i=0; i<5; i++) {
        pv[i] = i+1;
    }
We could have used pointer notation as shown below; however,
    the array notation is often easier to follow:
    for(int i=0; i<5; i++) {
        *(pv+i) = i+1;
    }
Figure 4-5 illustrates how memory
    is allocated for this example.
[image: Array allocated from the heap]

Figure 4-5. Array allocated from the heap

This technique creates a region of memory and treats it as an array.
    Its size is determined at runtime. However, we need to remember to
    deallocate the memory when we are through with it.
Warning
In the previous example we used  *(pv+i) instead of *pv+1.
      Since the dereference operator has higher precedence than the plus
      operator, the second expression’s pointer is dereferenced, giving us the
      value referenced by the pointer. We then add i to this integer value. This was not what was
      intended. In addition, when we use this expression as an lvalue, the compiler will complain. Thus, we
      need to force the addition to be performed first, followed by the
      dereference operation, in order for it to work correctly.


Using the realloc Function to Resize an Array



We can resize an existing array created using malloc with the realloc function. The essentials of the realloc function were detailed in Chapter 2. The C standard C99 supports variable length arrays. In some
    situations, this may prove to be a better solution than using the realloc function. If you are not using C99, then
    the realloc function will need to be
    used. Also, variable length arrays can only be declared as a member of a
    function. If the array is needed longer than the function’s duration, then
    realloc will need to be used.
To illustrate the realloc
    function, we will implement a function to read in characters from standard
    input and assign them to a buffer. The buffer will contain all of the
    characters read in except for a terminating return character. Since we do
    not know how many characters the user will input, we do not know how long
    the buffer should be. We will use the realloc function to allocate additional space by
    a fixed increment amount. The code to implement this function is shown
    below:
char* getLine(void) {
    const size_t sizeIncrement = 10;
    char* buffer = malloc(sizeIncrement);
    char* currentPosition = buffer;
    size_t maximumLength = sizeIncrement;
    size_t length = 0;    
    int character;

    if(currentPosition == NULL) { return NULL; }

    while(1) {
        character = fgetc(stdin);
        if(character == '\n') { break; }

        if(++length >= maximumLength) {
            char *newBuffer = realloc(buffer, maximumLength += sizeIncrement);

            if(newBuffer == NULL) {
                free(buffer);
                return NULL;
            }
                        
            currentPosition = newBuffer + (currentPosition - buffer);
            buffer = newBuffer;
        }
        *currentPosition++ = character;
    }
    *currentPosition = '\0';
    return buffer;
}
We will start by defining a series of declarations as summarized in
    Table 4-2.
Table 4-2. getLine variables
	sizeIncrement	The size of the initial buffer and the amount it will be
            incremented by when the buffer needs to be enlarged
	buffer	A pointer to the characters read in
	currentPosition	A pointer to the next free position in the buffer
	maximumLength	The maximum number of characters that can be safely stored
            in the buffer
	length	The number of characters read in
	character	The last character read in



The buffer is created with a size of sizeIncrement. If the malloc
    function is unable to allocate memory, the first if
    statement will force the function to return NULL. An infinite loop is entered where the
    characters are processed one at a time. When the loop exits, a NUL is
    added to terminate the string and the buffer’s address is returned.
Within the while loop, a character is read in. If
    it is a carriage return, the loop is exited. Next, the
    if statement determines whether we have exceeded the
    buffer’s size. Otherwise, the character is added to the current position
    within the buffer.
If we have exceeded the buffer’s size, the realloc function creates a new block of memory.
    This block is sizeIncrement bytes
    larger than the old one. If it is unable to allocate memory, we free up
    the existing allocated memory and force the function to return NULL. Otherwise, currentPosition is adjusted to point to the
    right position within the new buffer and we assign the variable buffer to
    point to the newly allocated buffer. The realloc function will not necessarily keep your
    existing memory in place, so you have to use the pointer it returns to
    figure out where your new, resized memory block is.
The variable newBuffer holds the
    allocated memory’s address. We needed a separate variable, not buffer, in case the realloc was unable to allocate memory. This
    allows us to detect and handle the condition.
We did not free buffer if
    realloc was successful because realloc will copy the original buffer to the new
    buffer and free up the old buffer. If we had tried to free buffer, then it would normally result in the
    program’s termination because we tried to free the same block of memory
    twice.
Figure 4-6
    illustrates memory being allocated for the getLine function with an input string of “Once
    upon a time there was a giant pumpkin.” The program stack has been
    simplified to ignore the local variables except for buffer and currentPosition. The buffer has been extended
    four times, as indicated by the rectangle containing the input
    string.
[image: Memory allocation for getLine function]

Figure 4-6. Memory allocation for getLine function

The realloc function can also be
    used to decrease the amount of space used by a pointer. To illustrate its
    use, the trim function shown below will
    remove leading blanks in a string:
char* trim(char* phrase) {
    char* old = phrase;
    char* new = phrase;
    
    while(*old == ' ') {
        old++;
    }
    
    while(*old) {
        *(new++) = *(old++);
    }
    *new = 0;
    return (char*) realloc(phrase,strlen(phrase)+1);    
}

int main() {
    char* buffer = (char*)malloc(strlen("  cat")+1);
    strcpy(buffer,"  cat");
    printf("%s\n",trim(buffer));
}
The first while loop uses the tmp variable to skip over any leading blanks.
    The second while loop copies the remaining characters
    in the string to the beginning of the string. It will evaluate to true
    until NUL is reached, which will
    evaluate to false. A zero is then added to terminate the string. The
    realloc function is then used to
    reallocate the memory based on the string’s new length.
Figure 4-7 illustrates the function’s use
    with an original string of “cat.” The state of string before and after the
    trim function executes is shown. The
    memory in red is the old memory and should not be accessed.
[image: Realloc example]

Figure 4-7. Realloc example


Passing a One-Dimensional Array



When a one-dimensional array is passed to a function, the
    array’s address is passed by value. This makes the transfer of information
    more efficient since we are not passing the entire array and having to
    allocate memory in the stack for it. Normally, this means the array’s size
    must be passed. If we don’t, from the function’s perspective all we have
    is the address of an array with no indication of its size.
Unless there is something integral to the array to tell us its
    bounds, we need to pass the size information when we pass the array. In
    the case of a string stored in an array, we can rely on the NUL termination character to tell us when we can
    stop processing the array. We will examine this in Chapter 5. Generally, if we do not know the
    array’s size, we are unable to process its elements and can wind up
    working with too few elements or treating memory outside of the array as
    if it were part of the array. This will frequently result in abnormal
    program termination.
We can declare the array in the function declaration using one of
    two notations: array notation or pointer notation.
Using Array Notation



In the following example, an integer array is passed to a
      function along with its size. Its contents are then displayed:
void displayArray(int arr[], int size) {
    for (int i = 0; i < size; i++) {
        printf("%d\n", arr[i]);
    }
}

    int vector[5] = {1, 2, 3, 4, 5};
    displayArray(vector, 5);
The sequence’s output will be the numbers 1 through 5.We passed
      the number 5 to the function that indicates its size. We could have
      passed any positive number and the function would attempt to display the
      corresponding number of elements, regardless of whether the size was
      correct. The program may terminate if we attempt to address memory
      outside of the array’s bounds. The memory allocation for this example is
      shown in Figure 4-8.
[image: Using array notation]

Figure 4-8. Using array notation

Warning
A common mistake is to use the sizeof operator with the array in order to
        determine its number of elements, as shown below. However, as
        explained in the sectionOne-Dimensional Arrays,
        this is not the correct way of determining its size. In this case, we
        would be passing the value of 20 to the array.
    displayArray(arr, sizeof(arr));

It is a common practice to pass a size smaller than the actual
      number of elements in an array. This is done to process only part of an
      array. For example, assume we read in a series of ages into an array but
      did not fill up the array. If we called a sort
      function to sort it, we would only want to sort the valid ages, not
      every array element.

Using Pointer Notation



We do not have to use the bracket notation when declaring an
      array parameter of a function. Instead, we can use pointer notation as
      follows:
void displayArray(int* arr, int size) {
    for (int i = 0; i < size; i++) {
        printf("%d\n", arr[i]);
    }
}
We continued to use array notation within the function. If
      desired, we could have used pointer notation in the function:
void displayArray(int* arr, int size) {
    for (int i = 0; i < size; i++) {
        printf("%d\n", *(arr+i));
    }
}
If we had used array notation to declare the function, we could
      have still used pointer notation in the function’s body:
void displayArray(int arr[], int size) {
    for (int i = 0; i < size; i++) {
        printf("%d\n", *(arr+i));
    }
}


Using a One-Dimensional Array of Pointers



In this section, we will examine the key aspects of using an
    array of pointers by using an array of pointers to integer. Examples of
    array of pointers can also be found in:
	Using an Array of Function Pointers, where
        we use an array of function pointers;

	How Memory Is Allocated for a Structure,
        where an array of structures is used; and

	Passing Arguments to an Application, where
        the argv array is handled.



The purpose of this section is to set the stage for later examples
    by illustrating the essence of the approach. The following sequence
    declares an array of integer pointers, allocates memory for each element,
    and initializes this memory to the array’s index:
    int* arr[5];
    for(int i=0; i<5; i++) {
        arr[i] = (int*)malloc(sizeof(int));
        *arr[i] = i;
    }
If this array was displayed, the numbers 0 through 4 would be
    printed. We used arr[i] to reference
    the pointer and *arr[i] to assign a
    value to the location referenced by the pointer. Do not let the use of
    array notation confuse you. Since arr
    was declared as an array of pointers, arr[i] returns an address. When we dereference a
    pointer such as *arr[i], we get the
    contents at that address.
We could have used the following equivalent pointer notation
    for the loop’s body:
        *(arr+i) = (int*)malloc(sizeof(int));
        **(arr+i) = i;
This notation is harder to follow, but understanding it will further
    your C expertise. We are using two levels of indirection in the second
    statement. Mastery of this type of notation will separate you from the
    less experienced C programmers.
The subexpression (arr+i)
    represents the address of the array’s ith
    element. We need to modify the content of this address so we use the
    subexpression *(arr+i). The allocated memory is
    assigned to this location in the first statement. Dereferencing this
    subexpression a second time, as we do in the second statement, returns the
    allocated memory’s location. We then assign the variable i to it. Figure 4-9
    illustrates how memory is allocated.
For example, arr[1] is located at address 104.
    The expression (arr+1) will give us 104. Using
    *(arr+1) gives us its content. In this example, it is
    the pointer 504. Dereferencing this a second time using
    **(arr+1) gives us the contents of 504, which is a
    1.
[image: Array of pointers]

Figure 4-9. Array of pointers

Example expressions are listed in Table 4-3. Reading pointer expression from left to
    right and not ignoring parentheses can help in understanding how they
    work.
Table 4-3. Array of pointers expressions
	Expression	Value
	*arr[0]	0
	**arr	0
	**(arr+1)	1
	arr[0][0]	0
	arr[3][0]	3



The first three expressions are similar to those in the previous
    explanation. The last two are different. The use of a pointer to a pointer
    notation suggests we are dealing with an array of pointers. In effect,
    this is what we are doing. If we reexamine Figure 4-9 and pretend each element of arr points to an array of size one, then the
    last two expressions make sense. What we have is a five-element array of
    pointers to a series of one-element arrays.
The expression arr[3][0] refers to the fourth
    element of arr and then the first element of the array it points to. The
    expression arr[3][1] does not work because the array
    the fourth element is pointing to does not have two elements.
This suggests the ability to create jagged arrays. This is indeed
    possible and is the subject of the sectionJagged Arrays and Pointers.

Pointers and Multidimensional Arrays



Parts of multidimensional arrays can be treated as subarrays. For
    example, each row of a two-dimensional array can be treated as a
    one-dimensional array. This behavior affects how we use pointers when
    dealing with multidimensional arrays.
To illustrate this behavior, we create a two-dimensional array and
    initialize it as follows:
   int matrix[2][5] = {{1,2,3,4,5},{6,7,8,9,10}};
The addresses and their corresponding values are then
    displayed:
   for(int i=0; i<2; i++) {
      for(int j=0; j<5; j++) {
         printf("matrix[%d][%d]  Address: %p  Value: %d\n",
                    i, j, &matrix[i][j], matrix[i][j]);
      }
   }
The output follows:
matrix[0][0]  Address: 100  Value: 1
matrix[0][1]  Address: 104  Value: 2
matrix[0][2]  Address: 108  Value: 3
matrix[0][3]  Address: 112  Value: 4
matrix[0][4]  Address: 116  Value: 5
matrix[1][0]  Address: 120  Value: 6
matrix[1][1]  Address: 124  Value: 7
matrix[1][2]  Address: 128  Value: 8
matrix[1][3]  Address: 132  Value: 9
matrix[1][4]  Address: 136  Value: 10
The array is stored in row-column order. That is, the first row is
    stored sequentially in memory followed by the second row. The memory
    allocation is illustrated in Figure 4-10.
We can declare a pointer for use with this array as follows:
   int (*pmatrix)[5] = matrix;
[image: Two-dimensional array memory allocation]

Figure 4-10. Two-dimensional array memory allocation

The expression, (*pmatrix),
    declares a pointer to an array. Combined with the rest of the declaration,
    pmatrix is defined as a pointer to a
    two-dimensional array of integers with five elements per column. If we had
    left the parentheses off, we would have declared a five-element array of
    pointers to integers. The size of the first dimension is 2 since we know
    the dimensions of the matrix. If a
    different size is used to access the array, then the results are
    unpredictable.
If we want to access the second element, 2, using pointer
    notation, it might seem reasonable to use the following:
    printf("%p\n", matrix);
    printf("%p\n", matrix + 1);
The output follows:
100
120
The address returned by matrix+1
    is not offset by 4 from the beginning of the array. Instead, it is offset
    by the first row’s size, 20 bytes. Using matrix by itself returns the address of the
    array’s first element. Since a two-dimensional array is an array of
    arrays, we get the address of a five-element integer array. Its size is
    20. We can verify this with the following statement, which will display
    20:
    printf("%d\n",sizeof(matrix[0]));  // Displays 20
To access the array’s second element, we need to add 1 to the first
    row of the array as follows: *(matrix[0] +
    1). The expression, matrix[0], returns the address of the first
    element of the first row of the array. This address is the address of an
    array of integers. Thus, when we add one to it, the size of a single
    integer is added to it, giving us the second element. The output will be
    104 and 2.
   printf("%p  %d\n", matrix[0] + 1, *(matrix[0] + 1));
We can graphically depict the array as illustrated in Figure 4-11.
[image: Graphically depiction of a two-dimensional array]

Figure 4-11. Graphically depiction of a two-dimensional array

Two-dimensional array notation can be interpreted as shown in Figure 4-12.
[image: Two-dimensional array notation]

Figure 4-12. Two-dimensional array notation


Passing a Multidimensional Array



Passing a multidimensional array to a function can be confusing,
    especially when pointer notation is used. When passing a multidimensional
    array, we need to determine whether to use array notation or pointer
    notation in the function’s signature. Another consideration is how to
    convey the array’s shape. By shape, we are referring to the number and
    size of its dimensions. If we want to use array notation within the
    function, it is imperative to specify the array’s shape. Otherwise, the
    compiler is unable to use subscripts.
To pass the matrix array,
    use either:
void display2DArray(int arr[][5], int rows) {
or:
void display2DArray(int (*arr)[5], int rows) {
In both versions the number of columns is specified. This is needed
    because the compiler needs to know the number of elements in each row. If
    this information is not passed, then it is unable to evaluate expressions
    such as arr[0][3] as explained in the section Pointers and Multidimensional Arrays.
In the first version, the expression arr[] is an
    implicit declaration of a pointer to an array. In the second version, the
    expression (*arr) is an explicit declaration of the
    pointer.
Warning
The following declaration will not work correctly:
void display2DArray(int *arr[5], int rows) {
While it will not generate a syntax error, the array passed is
      assumed to be a five-element array of pointers to integers. Using a One-Dimensional Array of Pointers discusses arrays of
      pointers.

A simple implementation of this function and invocation
    follows:
void display2DArray(int arr[][5], int rows) {
    for (int i = 0; i<rows; i++) {
        for (int j = 0; j<5; j++) {
            printf("%d", arr[i][j]);
        }
        printf("\n");
    }
}

void main() {
    int matrix[2][5] = {
        {1, 2, 3, 4, 5},
        {6, 7, 8, 9, 10}
    };
    display2DArray(matrix, 2);
}
The function does not allocate memory for the array. Only the
    address is passed. The program stack’s state for this call is shown in
    Figure 4-13.
[image: Passing multidimensional array]

Figure 4-13. Passing multidimensional array

You may encounter a function declared as follows. It is passed a
    single pointer and the number of rows and columns:
void display2DArrayUnknownSize(int *arr, int rows, int cols) {
    for(int i=0; i<rows; i++) {
        for(int j=0; j<cols; j++) {
            printf("%d ", *(arr + (i*cols) + j));
        }
        printf("\n");
    }
}
The printf statement calculates
    the address of each element by adding to arr the number of elements in the previous
    row(s), (i*cols), and then adding
    j to specify the column. To invoke the
    function, we can use the following:
    display2DArrayUnknownSize(&matrix[0][0], 2, 5);
Within the function, we cannot use array subscripts as shown
    below:
    printf("%d ", arr[i][j]);
This is not possible because the pointer is not declared as a
    two-dimensional array. However, it is possible to use array notation as
    shown below. We can use a single subscript since it will be interpreted
    simply as an offset within the array, whereas two subscripts cannot be
    used because the compiler doesn’t know the size of the dimensions:
    printf("%d ", (arr+i)[j]);
The first element’s address is passed using &matrix[0][0] instead of matrix. While using matrix will execute correctly, a warning will be
    generated, indicating incompatible pointer types. The expression &matrix[0][0] is a pointer to an integer,
    whereas matrix is
    a pointer to an array of integers.
When passing an array with more than two dimensions, all but the
    size of the first dimension need to be specified. The following
    demonstrates a function written to display a three-dimensional array. The
    last two dimensions are specified in the declaration:
void display3DArray(int (*arr)[2][4], int rows) {
    for(int i=0; i<rows; i++) {
        for(int j=0; j<2; j++) {
            printf("{");
            for(int k=0; k<4; k++) {
                printf("%d ", arr[i][j][k]);
            }
            printf("}");
        }
        printf("\n");
    }
}
The following code shows the function’s invocation:
    int arr3d[3][2][4] = {
        {{1, 2, 3, 4}, {5, 6, 7, 8}},
        {{9, 10, 11, 12}, {13, 14, 15, 16}},
        {{17, 18, 19, 20}, {21, 22, 23, 24}}
    };

    display3DArray(arr3d,3);
The output follows:
{1 2 3 4 }{5 6 7 8 }
{9 10 11 12 }{13 14 15 16 }
{17 18 19 20 }{21 22 23 24 }
Allocation of the array’s memory is depicted in Figure 4-14.
[image: Three-dimensional array]

Figure 4-14. Three-dimensional array

The expression arr3d[1] refers to
    the array’s second row and is a pointer to a two-dimensional array with
    two rows and four columns. The expression arr3d[1][0] refers to the second row, first
    column of the array and is a pointer to a one-dimensional array of
    size 5.

Dynamically Allocating a Two-Dimensional Array



Several issues are involved with dynamically allocating memory for
    a two-dimensional array, including:
	Whether the array elements need to be contiguous

	Whether the array is jagged



Memory is allocated contiguously when a two-dimensional array is
    declared as follows:
   int matrix[2][5] = {{1,2,3,4,5},{6,7,8,9,10}};
However, when we use a function such as malloc to create a two-dimensional array, there
    are variations in how memory can be allocated. Since a two-dimensional
    array can be treated as an array of arrays, there is no reason the “inner”
    arrays need to be contiguous. When array subscripts are used with such an
    array, the array’s noncontiguous nature is handled transparently.
Note
Whether or not it is contiguous can affect other operations, such
      as copying a block of memory. Multiple copies may be required if the
      memory is not contiguous.

Allocating Potentially Noncontiguous Memory



The following illustrates one way of allocating a two-dimensional
      array where the allocated memory is not guaranteed to be contiguous.
      First, the “outer” array is allocated and then each row is allocated
      using separate malloc
      statements:
    int rows = 2;
    int columns = 5;
    
    int **matrix = (int **) malloc(rows * sizeof(int *));
    
    for (int i = 0; i < rows; i++) {
        matrix[i] = (int *) malloc(columns * sizeof(int));
    }
Since separate malloc calls
      were used, the allocated memory is not guaranteed to be contiguous. This
      is illustrated in Figure 4-15.
[image: Noncontiguous allocation]

Figure 4-15. Noncontiguous allocation

The actual allocation depends on the heap manager and the heap’s
      state. It may well be contiguous.

Allocating Contiguous Memory



We will present two approaches for allocating contiguous memory
      for a two-dimensional array. The first technique allocates the “outer”
      array first and then all of the memory for the rows. The second
      technique allocates all of the memory at once.
The first technique is illustrated in the following sequence. The
      first malloc allocates an array of
      pointers to integers. Each element will be used to hold a pointer to a
      row. This is the block allocated at address 500 in Figure 4-16. The second
      malloc allocates memory for all of
      the elements of the array at location 600. In the for
      loop, each element of the first array is assigned a portion of the
      memory allocated by the second malloc:
    int rows = 2;
    int columns = 5;
    int **matrix = (int **) malloc(rows * sizeof(int *));
    matrix[0] = (int *) malloc(rows * columns * sizeof(int));
    for (int i = 1; i < rows; i++)
        matrix[i] = matrix[0] + i * columns;
[image: Contiguous allocation with two malloc calls]

Figure 4-16. Contiguous allocation with two malloc calls

Technically, the memory for the first array may be separated from
      the memory for the array’s “body.” However, a contiguous region of
      memory is allocated for the body.
In the second technique shown below, all of the memory for the
      array is allocated at one time:
    int *matrix = (int *)malloc(rows * columns * sizeof(int));
This allocation is illustrated in Figure 4-17.
[image: Contiguous allocation with a single malloc call]

Figure 4-17. Contiguous allocation with a single malloc call

When the array is referenced later in code, array subscripts
      cannot be used. Instead, indexes into the array need to be calculated
      manually, as illustrated in the following code sequence. Each array
      element is initialized to the product of its indexes:
    for (int i = 0; i < rows; i++) {
        for (int j = 0; j < columns; j++) {
            *(matrix + (i*columns) + j) = i*j;
        }
    }
Array subscripts cannot be used because we have lost the shape
      information needed by the compiler to permit subscripts. This concept is
      explained in the section Passing a Multidimensional Array.
This approach has limited use in the real world, but it does
      illustrate the relationship between the concept of a two-dimensional
      array and the one-dimensional nature of main memory. The more convenient
      two-dimensional array notation makes this mapping transparent and easier
      to use.
We have demonstrated two general approaches for allocating
      contiguous memory for a two-dimensional array. The approach to use
      depends on the needs of the application. However, the last approach
      generates a single block of memory for the “entire” array.


Jagged Arrays and Pointers



A jagged array is a two-dimensional array possessing a
    different number of columns for each row. Conceptually, this is
    illustrated in Figure 4-18, where the array has three
    rows with a varying number of columns per row.
[image: Jagged array]

Figure 4-18. Jagged array

Before we learn how to create such an array, let’s examine a
    two-dimensional array created using compound
    literals. A compound literal is a C construct that consists of
    what appears to be a cast operator followed by an initializer list
    enclosed in braces. An example of a compound literal follows for both a
    constant integer and an array of integers. These would be used as part of
    a declaration:
(const int) {100}
(int[3]) {10, 20, 30}
In the following declaration, we create the array arr1 by declaring it as an array of pointers to
    an integer and using a block statement of compound literals to initialize
    it:
    int (*(arr1[])) = {
        (int[]) {0, 1, 2},
        (int[]) {3, 4, 5},
        (int[]) {6, 7, 8}};
This array has three rows and three columns. The array’s elements
    are initialized with the value 0 through 8 in row column order. Figure 4-19 depicts how memory is laid out for this
    array.
[image: Two-dimensional array]

Figure 4-19. Two-dimensional array

The following sequence displays the addresses and values of each
    array element:
    for(int j=0; j<3; j++) {
        for(int i=0; i<3; i++) {
            printf("arr1[%d][%d]  Address: %p  Value: %d\n", 
                    j, i, &arr1[j][i], arr1[j][i]);
        }
        printf("\n");
    }
When executed, we will get the following output:
arr1[0][0]  Address: 0x100  Value: 0
arr1[0][1]  Address: 0x104  Value: 1
arr1[0][2]  Address: 0x108  Value: 2

arr1[1][0]  Address: 0x112  Value: 3
arr1[1][1]  Address: 0x116  Value: 4
arr1[1][2]  Address: 0x120  Value: 5

arr1[2][0]  Address: 0x124  Value: 6
arr1[2][1]  Address: 0x128  Value: 7
arr1[2][2]  Address: 0x132  Value: 8
This declaration can be modified slightly to create a jagged array
    as depicted in Figure 4-18. The array declaration
    follows:
    int (*(arr2[])) = {
        (int[]) {0, 1, 2, 3},
        (int[]) {4, 5},
        (int[]) {6, 7, 8}};
We used three compound literals to declare the jagged array. The
    array’s elements are initialized in row-column order starting with a value
    of zero. The next sequence will display the array to verify its creation.
    The sequence required three for loops because each row
    had a different number of columns:
    int row = 0;
    for(int i=0; i<4; i++) {
        printf("layer1[%d][%d]  Address: %p  Value: %d\n", 
                row, i, &arr2[row][i], arr2[row][i]);
    }
    printf("\n"); 

    row = 1;
    for(int i=0; i<2; i++) {
        printf("layer1[%d][%d]  Address: %p  Value: %d\n", 
                row, i, &arr2[row][i], arr2[row][i]);
    }
    printf("\n");

    row = 2;
    for(int i=0; i<3; i++) {
        printf("layer1[%d][%d]  Address: %p  Value: %d\n", 
                row, i, &arr2[row][i], arr2[row][i]);
    }
    printf("\n");
The output of this sequence follows:
arr2[0][0]  Address: 0x000100  Value: 0
arr2[0][1]  Address: 0x000104  Value: 1
arr2[0][2]  Address: 0x000108  Value: 2
arr2[0][3]  Address: 0x000112  Value: 3

arr2[1][0]  Address: 0x000116  Value: 4
arr2[1][1]  Address: 0x000120  Value: 5

arr2[2][0]  Address: 0x000124  Value: 6
arr2[2][1]  Address: 0x000128  Value: 7
arr2[2][2]  Address: 0x000132  Value: 8
Figure 4-20 depicts how memory is
    laid out for this array.
[image: Jagged array memory allocation]

Figure 4-20. Jagged array memory allocation

In these examples, we used array notation as opposed to pointer
    notation when accessing the array’s contents. This made it somewhat easier
    to see and understand. However, pointer notation would have worked as
    well.
Compound literals are useful in creating jagged arrays. However,
    accessing elements of a jagged array can be awkward, as demonstrated with
    the previous three for loops. This example can be simplified if a separate
    array is used to maintain the size of each column. While you can create
    jagged arrays in C, it may not be worth the effort.

Summary



We started with a quick review of arrays and then examined the
    similarities and differences between array and pointer notation. Arrays
    can be created using malloc type
    functions. These type of functions provide more flexibility than afforded
    by traditional array declaration. We saw how we can use the realloc function to change the amount of memory
    allocated for an array.
Dynamically allocating memory for an array can present challenges.
    In the case with two or more dimensional arrays, we have to be careful to
    make sure the array is allocated in contiguous memory.
We also explored the problems that can occur when passing and
    returning arrays. Passing the array’s size to a function is normally
    required so the function can properly handle the array. We also examined
    how to create jagged arrays in C.

Chapter 5. Pointers and Strings



Strings can be allocated to different regions of memory and pointers
  are commonly used to support string operations. Pointers support the dynamic
  allocation of strings and passing strings to a function. A good
  understanding of pointers and their use with strings enables programmers to
  develop valid and efficient applications.
Strings are a common component of many applications and are a complex
  topic. In this chapter, we will explore the various ways of declaring and
  initializing strings. We will examine the use of literal pools in C
  applications and their impact. In addition, we will look at common string
  operations, such as comparing, copying, and concatenating strings.
Strings are regularly passed and returned to functions as pointers to
  char. When we pass a string, we can do so either as a
  pointer to a char or a pointer to a constant
  char. The latter approach protects the string from
  modification within the function. Many examples used in this chapter provide
  additional illustrations of the concepts developed in the function chapter.
  They differ as they do not need to pass their size to a function.
A string may also be returned from a function to fulfill a request.
  This string may be passed to the function to be modified or allocated from
  within the function. We could also return a statically allocated string.
  Each of these approaches will be examined.
We will also examine the use of function pointers and how they can
  assist sorting operations. Understanding how pointers work in these
  situations is the primary focus of this chapter.
String Fundamentals



A string is a sequence of characters terminated with the ASCII
    NUL character. The ASCII character
    NUL is represented as
    \0. Strings are commonly stored in arrays or in memory
    allocated from the heap. However, not all arrays of characters are
    strings. An array of char may not
    contain the NUL character. Arrays of
    char have been used to represent smaller integer units,
    such as boolean, to conserve memory space in an application.
There are two types of strings in C:
	Byte string
	Consists of a sequence of char data type

	Wide string
	Consists of a sequence of wchar_t data type



The wchar_t data type is used for
    wide characters and may be either 16 or 32 bits in width. Both of these
    strings are terminated by the NUL
    character. Byte string functions are found in the string.h file. Wide string functions are found
    in the wchar.h file. Unless otherwise
    noted, we will be using byte strings in this chapter. Wide chars were
    created to support non-Latin character sets and are useful in applications
    that support foreign languages.
The length of a string is the number of characters in the
    string. This does not include the NUL
    character. When memory is allocated for a string, remember to allocate
    enough memory for all of the characters plus the NUL character.
Warning
Remember that NULL and NUL are different. NULL is used as a special pointer and is
      typically defined as ((void*)0).
      NUL is a char and is defined as '\0'. They should not be used
      interchangeably.

Character constants are character sequences enclosed in single quotes.
    Normally, they consist of a single character but can contain more than one
    character, as found with escape sequences. In C, they are of type int. This is demonstrated as follows:
    printf("%d\n",sizeof(char));
    printf("%d\n",sizeof('a'));
When executed, the size of char
    will be 1 while the character literal’s size will be 4. This anomaly is an
    artifact of the language design.
String Declaration



String declarations are supported in one of three ways: either
      as a literal, as an array of characters, or using a pointer to a
      character. The string literal is a sequence of characters enclosed in
      double quotes. String literals are frequently used for initialization
      purposes. They are located in a string literal pool discussed in the
      next section.
String literals are not to be confused with characters enclosed in
      single quotes—these are character literals. As we will see in later
      sections, when used in place of string literals, character literals can
      cause problems.
An array of characters is illustrated below where we declare
      a header array whose size may hold up to 31 characters. Since a string
      requires the NUL termination
      character, an array declared to have 32 characters can only use 31
      elements for the actual string’s text. The string’s location depends on
      where the declaration is placed. We will explore this issue in the
      section String Initialization.
    char header[32];
A pointer to a character is illustrated below. Since it has
      not been initialized, it does not reference a string. The string’s
      length and location are not specified at this time.
    char *header;

The String Literal Pool



When literals are defined they are frequently assigned to a
      literal pool. This area of memory holds the character sequences making
      up a string. When a literal is used more than once, there is normally
      only a single copy of the string in the string literal pool. This will
      reduce the amount of space needed for the application. Since a literal
      is normally considered to be immutable, it does not hurt to have a
      single copy of it. However, it is not a good practice to assume there
      will only be a single copy or that literals are immutable. Most
      compilers provide an option to turn off string pooling. When this
      happens, literals may be duplicated, each having their own
      address.
Note
GCC uses a -fwritable-strings option to turn off string
        pooling. In Microsoft Visual Studio, the
        /GF option will turn on string pooling.

Figure 5-1 illustrates how memory
      may be allocated for a literal pool.
[image: String literal pool]

Figure 5-1. String literal pool

String literals are frequently allocated to read-only memory. This
      makes them immutable. It doesn’t matter where a string literal is used
      or whether it is global, static, or local. In this sense, string
      literals do not have scope.
When a string literal is not a constant



In most compilers, a string literal is treated as a
        constant. It is not possible to modify the string. However, in some
        compilers, such as GCC, modification of the string literal is
        possible. Consider the following example:
    char *tabHeader  = "Sound";
    *tabHeader = 'L';
    printf("%s\n",tabHeader);   // Displays "Lound"
This will modify the literal to “Lound.” Normally, this is
        not desirable and should be avoided. Making the variable a constant as
        follows will provide a partial solution to this problem. Any attempt
        to modify the string will result in a compile-time error.
    const char *tabHeader  = "Sound";


String Initialization



When we initialize a string, the approach we use depends on
      whether the variable is declared as an array of characters or as a
      pointer to a character. The memory used for a string will be either an
      array or a memory pointed to by a pointer. When a string is initialized,
      we can use a string literal or a series of characters, or obtain the
      characters from a different source such as standard input. We will
      examine these approaches.
Initializing an array of char



An array of char can be initialized
        using the initialization operator. In the following example, a header
        array is initialized to the character contained in a string
        literal:
    char header[] = "Media Player";
Since the literal “Media Player” is 12 characters in length, 13
        bytes are required to represent the literal. The array is allocated 13
        bytes to hold the string. The initialization will copy these
        characters to the array terminated by the NUL character, as illustrated in Figure 5-2, assuming the declaration
        is located in the main
        function.
An array can also be initialized using strcpy function, which is discussed in
        detail in the section Copying Strings. In the
        following sequence, the string literal is copied to the array.
    char header[13];
    strcpy(header,"Media Player");
[image: Initializing an array of char]

Figure 5-2. Initializing an array of char

A more tedious technique assigns individual characters as
        follows:
    header[0] = 'M';
    header[1] = 'e';
        ...
    header[12] = '\0';
Warning
The following assignment is invalid. We cannot assign the
          address of a string literal to an array name.
    char header2[];
    header2 = "Media Player";


Initializing a pointer to a char



Using dynamic memory allocation provides flexibility and
        potentially allows the memory to
        stay around longer. The following declaration will be used to
        illustrate this technique:
    char *header;
A common way to initialize this string is to use the
        malloc and strcpy functions to allocate and copy a
        literal to the string, as illustrated below:
    char *header = (char*) malloc(strlen("Media Player")+1);
    strcpy(header,"Media Player");
Assuming that the code is located in the main function, Figure 5-3 shows the state of the
        program stack.
[image: Initializing a pointer to a char]

Figure 5-3. Initializing a pointer to a char

In the previous use of the malloc function, we used the strlen function with a string literal
        argument. We could have declared its size explicitly as shown
        below:
    char *header = (char*) malloc(13);
Warning
When determining the length of a string to be used with the
          malloc function:
	Always remember to add one for the NUL terminator.

	Don’t use sizeof
              operator. Instead, use the strlen function to determine the
              length of an existing string. The sizeof operator will return the size
              of an array or pointer, not the length of the string.




Instead of using a string literal and strcpy function to initialize the string, we
        can use the following:
    *(header + 0) = 'M';
    *(header + 1) = 'e';
        ...
    *(header + 12) = '\0';
The address of a string literal can be assigned directly to a
        character pointer as shown below. However, this does not create a new
        copy of the string as illustrated in Figure 5-4:
    char *header = "Media Player";
[image: Copying a string literal’s address to a pointer]

Figure 5-4. Copying a string literal’s address to a pointer

Warning
Attempting to initialize a pointer to a char with a character
          literal will not work. Since a character literal is of type
          int, we would be trying to assign an integer to a
          character pointer. This will frequently cause the application to terminate
          when the pointer is dereferenced:
    char* prefix = '+';   // Illegal
A valid approach using the malloc function follows:
    prefix = (char*)malloc(2);
    *prefix = '+';
    *(prefix+1) = 0;


Initializing a string from standard input



A string can also be initialized from some external source
        such as standard input. However, potential initialization errors can
        occur when reading in a string from standard input, as shown below.
        The problem exists because we have not assigned memory to the command variable before attempting to use
        it:
    char *command;
    printf("Enter a Command: ");
    scanf("%s",command);
To address this problem, we should first allocate memory for the
        pointer or use a fixed size array instead of a pointer. However, the
        user may enter more data than can be held by these approaches. A more
        robust approach is illustrated in Chapter 4.

Summary of string placement



Strings can be allocated in several potential locations.
        The following example illustrates possible variations with Figure 5-5 illustrates how these
        strings are laid out in memory:
char* globalHeader = "Chapter";
char globalArrayHeader[] = "Chapter";

void displayHeader() {
    static char* staticHeader = "Chapter";
    char* localHeader = "Chapter";
    static char staticArrayHeader[] = "Chapter";
    char localArrayHeader[] = "Chapter";
    char* heapHeader = (char*)malloc(strlen("Chapter")+1);
    strcpy(heapHeader,"Chapter");
}
Knowing where a string is located is useful when attempting to
        understand how a program works and when using pointers to access the
        strings. A string’s location determines how long it will persist and
        which parts of an application can access it. For example, strings
        allocated to global memory will always be available and are accessible
        by multiple functions. Static strings will always be available but are
        accessible only to their defining function. Strings allocated to the
        heap will persist until they are released and may be used in multiple
        functions. Understanding these issues allows you to make informed
        decisions.
[image: String allocation in memory]

Figure 5-5. String allocation in memory




Standard String Operations



In this section, we will examine the use of pointers in common
    string operations. This includes comparing, copying, and concatenating
    strings.
Comparing Strings



String comparisons can be an integral part of an application. We
      will examine the details of how string comparisons are made, as
      incorrect comparisons can result in misleading or invalid results.
      Understanding how comparisons are made will help you avoid incorrect
      operations. This understanding will transfer to similar
      situations.
The standard way to compare strings is to use the strcmp function. Its prototype follows:
int strcmp(const char *s1, const char *s2);
Both of the strings being compared are passed as pointers to
      constant chars. This allows us to use the function
      without fear of it modifying the strings passed. This function returns
      one of three values:
	Negative
	If s1 precedes s2 lexicographically
            (alphabetically)

	Zero
	If the two strings are equal

	Positive
	If s1 follows s2 lexicographically



The positive and negative return values are useful for sorting
      strings in alphabetical order. The use of this function to test equality
      is illustrated below. The user’s entry will be stored in command. This is then compared to the literal
      string:
    char command[16];

    printf("Enter a Command: ");
    scanf("%s", command);
    if (strcmp(command, "Quit") == 0) {
        printf("The command was Quit");
    } else {
        printf("The command was not Quit");
    }
Memory for this example is allocated as shown in Figure 5-6.
[image: strcmp example]

Figure 5-6. strcmp example

There are a couple of incorrect ways to compare two strings. The
      first approach shown below attempts to use the assignment operator to
      perform the comparison:
    char command[16];
    
    printf("Enter a Command: ");
    scanf("%s",command);
    if(command = "Quit") {
       ...
First, it does not perform a comparison, and second, this will
      result in a syntax error message complaining about incompatible types.
      We cannot assign the address of a string literal to the array name. In
      this example, we tried to assign the string literal’s address, 600, to
      command. Since command is an array, it is not possible to
      assign a value to this variable without using array subscripts.
The second approach is to use the equality operator:
    char command[16];
    
    printf("Enter a Command: ");
    scanf("%s",command);
    if(command == "Quit") {
       ...
This should evaluate false since we are comparing the address of
      command, 300, with the string
      literal’s address, 600. The equality operator compares the addresses,
      not what is stored at the addresses. Using an array name or a string
      literal by themselves will return their addresses.

Copying Strings



Copying strings is a common operation and is normally accomplished
      using the strcpy function whose
      prototype follows:
char* strcpy(char *s1, const char *s2);
In this section, we will cover the basic copying process and
      identify common pitfalls. We will assume there is a need to copy an
      existing string to a new dynamically allocated buffer, though we could
      also have used an array of characters.
A common application is to read in a series of strings and store
      each of them in an array using a
      minimum amount of memory. This can be accomplished by creating an
      array sized to handle the largest
      string that the user might enter and then reading it into this array. On
      the basis of the string read in, we can then allocate just the right
      amount of memory. The basic approach is to:
	Read in the string using a large array of
          char

	Use malloc to allocate just
          the right amount of memory

	Use strcpy to copy the
          string into the dynamically allocated memory



The following sequence illustrates this technique. The names array will hold pointers to each name
      read in. The count variable specifies
      the next available array element. The name array is used to hold a string that is
      read in and is reused for each name read. The malloc function allocates the memory needed
      for each string and is assigned to the next available element of
      names. The name is then copied into
      the allocated memory:
    char name[32];
    char *names[30];
    size_t count = 0;
    
    printf("Enter a name: ");
    scanf("%s",name);
    names[count] = (char*)malloc(strlen(name)+1);
    strcpy(names[count],name);
    count++;
We can repeat the operation within a loop, incrementing count with
      each iteration. Figure 5-7 illustrates how
      memory is laid out for this process after reading in a single name:
      “Sam.”
[image: Copying a string]

Figure 5-7. Copying a string

Two pointers can reference the same string. When two pointers
      reference the same location, this is called
      aliasing. This topic is covered in Chapter 8. While this is not necessarily a
      problem, realize that the assignment of one pointer to another does not
      result in the string being copied. Instead, we simply copied the
      string’s address.
To illustrate this, an array of pointers to page headers is
      declared below. The page with index
      12 is assigned the address of a string literal. Next, the
      pointer in pageHeaders[12] is copied to pageHeaders[13]. Both of these pointers now
      reference the same string literal. The pointer is copied, not the
      string:
    char *pageHeaders[300];
    
    pageHeaders[12] = "Amorphous Compounds";
    pageHeaders[13] = pageHeaders[12];
These assignments are illustrated in Figure 5-8.
[image: Effects of copying pointers]

Figure 5-8. Effects of copying pointers


Concatenating Strings



String concatenation involves the merging of two strings. The
      strcat function is frequently used
      for this operation. This function takes pointers to the two strings to
      be concatenated and returns a pointer to the concatenated results. The
      prototype for the function follows:
char *strcat(char *s1, const char *s2);
The function concatenates the second string to the end of the
      first string. The second string is passed as a pointer to a constant
      char. The function does not allocate memory. This
      means the first string must be large enough to hold the concatenated
      results or it may write past the end of the string, resulting in
      unpredictable behavior. The return value of the function is the same
      address as its first argument. This can be convenient in some situations
      such as when the function is used as an argument of the printf function.
To illustrate the use of this function, we will combine two error
      message strings. The first one is a prefix and the second one is a
      specific error message. As shown below, we first need to allocate enough
      memory for both strings in a buffer, then copy the first string to the
      buffer, and finally concatenate the second string with the
      buffer:
    char* error = "ERROR: ";
    char* errorMessage = "Not enough memory";

    char* buffer = (char*)malloc(strlen(error)+strlen(errorMessage)+1);
    strcpy(buffer,error);
    strcat(buffer, errorMessage);
    
    printf("%s\n", buffer);
    printf("%s\n", error);
    printf("%s\n", errorMessage);
We added one to the malloc
      function’s argument to accommodate the NUL character. If we assume the first literal
      immediately precedes the second literal in memory, the output of this
      sequence will be as follows. Figure 5-9 illustrates how memory is
      allocated:
ERROR: Not enough memory
ERROR: 
Not enough memory
[image: Correct copy operation]

Figure 5-9. Correct copy operation

If we had not allocated a separate memory location for the
      concatenated string, we would overwrite the first string. This is
      illustrated in the following example, where a buffer is not used. We
      also assume the first literal immediately precedes the second literal in
      memory:
    char* error = "ERROR: ";
    char* errorMessage = "Not enough memory";
    
    strcat(error, errorMessage);
    printf("%s\n", error);
    printf("%s\n", errorMessage);
The output of this sequence follows:
ERROR: Not enough memory
ot enough memory
The errorMessage string has
      been shifted one character to the left. This is because the resulting
      concatenated string is written over errorMessage. Since the literal “Not enough
      memory” follows the first literal, the second literal is overwritten.
      This is illustrated in Figure 5-10, where the literal pool’s
      state is displayed before and after the copy operation.
[image: Improper string copy operation]

Figure 5-10. Improper string copy operation

We could have used a char array instead of a
      pointer for the messages, as shown below. However, this will not always
      work:
    char error[] = "ERROR: ";
    char errorMessage[] = "Not enough memory";
If we used the following strcpy
      call, we would get a syntax error. This is because we are attempting to
      assign the pointer returned by the function to the name of an array.
      This type of operation is illegal:
    error = strcat(error, errorMessage);
If we remove the assignment, as follows, we would likely get a
      memory access violation, since the copy operation is overwriting a part
      of the stack frame. This assumes the array declarations are in a
      function, as illustrated in Figure 5-11. Whether the source strings
      are stored in the string literal pool or on the stack frame, they should
      not be used to directly hold the concatenated result. Always allocate
      dedicated memory for the concatenation:
    strcat(error, errorMessage);
[image: Overwriting the stack frame]

Figure 5-11. Overwriting the stack frame

Another simple mistake made when concatenating strings is using a
      character literal instead of a string literal. In the following example,
      we concatenate a string to a path string. This will work as
      expected:
    char* path = "C:";
    char* currentPath = (char*) malloc(strlen(path)+2);
    currentPath = strcat(currentPath,"\\");
We add two to the string length in the malloc call because we need space for the
      extra character and the NUL
      character. We are concatenating a single character, the backslash, since
      we used an escape sequence in the string literal.
However, if we used a character literal instead, as shown below,
      we will get a runtime error when the second argument is mistakenly
      interpreted as the address of a char:
    currentPath = strcat(path,'\\');


Passing Strings



Passing a string is simple enough. In the function call, use an
    expression that evaluates to the address of a char. In
    the parameter list, declare the parameter as a pointer to a
    char. The interesting issues occur when using the
    string within the function. We will first examine how to pass a simple
    string in the first two subsections and then how to pass a string
    requiring initialization in the third section. Passing strings as
    arguments to an application is covered in the section Passing Arguments to an Application.
Passing a Simple String



There are several ways of passing the address of a string to a
      function, depending on how the string is declared. In this section, we
      will demonstrate these techniques using a function that mimics the
      strlen function as implemented below.
      We used parentheses to force the post increment operator to execute
      first, incrementing the pointer. Otherwise, the character referenced by
      string would have been incremented,
      which is not what is desired:
size_t stringLength(char* string) {
    size_t length = 0;
    while(*(string++)) {
        length++;
    }
    return length;
}
Note
The string should actually be passed as a pointer to a constant
        char, as discussed in the section
        Passing a Pointer to a Constant char.

Let’s start with the following declarations:
    char simpleArray[] = "simple string";
    char *simplePtr = (char*)malloc(strlen("simple string")+1);
    strcpy(simplePtr, "simple string");
To invoke the function with the pointer, we simply use the
      pointer’s name:
    printf("%d\n",stringLength(simplePtr));
To invoke the function using the array, we have three
      choices, as shown below. In the first statement, we use the array’s
      name. This will return its address. In the second statement, the
      address-of operator is used explicitly. This is redundant and
      unnecessary. In addition, it will often generate a warning. In the third
      statement, we used the address-of operator with the array’s first
      element. While this works, it is somewhat verbose:
    printf("%d\n",stringLength(simpleArray));
    printf("%d\n",stringLength(&simpleArray));
    printf("%d\n",stringLength(&simpleArray[0]));
Figure 5-12 illustrates how memory
      will be allocated for the stringLength function.
[image: Passing a string]

Figure 5-12. Passing a string

Now let’s turn our attention to how we declare the formal
      parameter. In the previous implementation of stringLength, we declared the parameter as a
      pointer to a char. We could have also used array
      notation as shown below:
size_t stringLength(char string[]) { ... }
The function’s body will stay the same. This change will have no
      effect on how the function is invoked or its behavior.

Passing a Pointer to a Constant char



Passing a pointer to a string as a constant
      char is a very common and useful technique. It passes
      the string using a pointer, and at the same time prevents the string
      being passed from being modified. A better implementation of the
      stringLength function developed in
      the section Passing Strings incorporates this
      declaration as follows:
size_t stringLength(const char* string) {
    size_t length = 0;
    while(*(string++)) {
        length++;
    }
    return length;
}
If we attempt to modify the original string as follows, then a
      compile-time error message will be generated:
size_t stringLength(const char* string) {
      ...
    *string = 'A';
      ...
}

Passing a String to Be Initialized



There are situations where we want a function to return a
      string initialized by the function. For example, we may want to pass
      information about a part, such as its name and quantity, and then have a
      formatted string representing this information returned. By keeping the
      formatting process in a function we can reuse it in different sections
      of our program.
However, we need to decide whether we want to pass the function an
      empty buffer to be filled and returned by the function, or whether the
      buffer should be dynamically allocated by the function and then returned
      to us.
When a buffer is passed:
	The buffer’s address and its size must be passed

	The caller is responsible for deallocating the buffer

	The function normally returns a pointer to this buffer



This approach keeps the buffer’s allocation and deallocation
      responsibility with the caller. Returning a pointer to the buffer is
      common, even if it is unnecessary, as typified by strcpy and similar functions. The following
      format function illustrates this
      approach:
char* format(char *buffer, size_t size, 
        const char* name, size_t quantity, size_t weight) {
    snprintf(buffer, size, "Item: %s  Quantity: %u  Weight: %u",
            name, quantity, weight);
    return buffer;
}
The snprintf function was used
      as a simple way of formatting the string. This function writes to the
      buffer provided by the first parameter. The second argument specifies
      the buffer’s size. This function will not write past the end of the
      buffer. Otherwise, the function behaves the same way as printf.
The following demonstrates the use of the function:
printf("%s\n",format(buffer,sizeof(buffer),"Axle",25,45));
The output of this sequence is as follows:
Item: Axle  Quantity: 25  Weight: 45
By returning a pointer to buffer, we are able to use the function as a
      parameter of the printf
      function.
An alternative to this approach is to pass NULL as the buffer’s
      address. This implies the caller does not want to provide the buffer or
      is unsure how large the buffer should be. This version of the function
      can be implemented as follows. When length is calculated the
      subexpression 10 + 10 represents the
      largest width anticipated for the quantity and weight. The one allows
      space for the NUL termination
      character:
char* format(char *buffer, size_t size, 
        const char* name, size_t quantity, size_t weight) {

    char *formatString = "Item: %s  Quantity: %u  Weight: %u";
    size_t formatStringLength = strlen(formatString)-6;
    size_t nameLength = strlen(name);
    size_t length = formatStringLength + nameLength + 
            10 + 10 + 1;
    
    if(buffer == NULL) {
        buffer = (char*)malloc(length);
        size = length;
    } 
    snprintf(buffer, size, formatString, name, quantity, weight);
    return buffer;
}
The function variation to use depends on the needs of the
      application. The chief drawback of the second approach is that the
      caller is now responsible for freeing the memory allocated. The caller
      needs to be fully aware of how this function should be used; otherwise,
      a memory leak can easily occur.

Passing Arguments to an Application



The main function is
      normally the first function in an application to be executed. With
      console-based programs it is common to pass information to the program
      to enable or otherwise control the application’s behavior. These
      parameters may be used to specify which files to process or to configure
      the application’s output. For example, the ls Linux command will list the files in the
      current directory based on parameters used with the command.
C supports command line arguments using the traditionally named
      argc and argv parameters. The first parameter, argc, is an integer that indicates how many
      parameters are passed. At least one parameter is always passed. This
      parameter is the name of the executable. The second
      parameter, argv, is normally viewed
      as a one-dimensional array of string pointers. Each pointer references a
      command line argument.
The following main function
      will simply list its arguments one per line. In this version, argv is declared as a pointer to a pointer to
      a char:
int main(int argc, char** argv) {
    for(int i=0; i<argc; i++) {
        printf("argv[%d] %s\n",i,argv[i]);
    }
    ...
}
The program is executed with the following command line:
process.exe -f names.txt limit=12 -verbose
The output will be as follows:
argv[0] c:/process.exe
argv[1] -f
argv[2] names.txt
argv[3] limit=12
argv[4] -verbose
Each command line parameter is delineated by whitespace. The
      memory allocated for the program is illustrated in Figure 5-13.
[image: Using argc/argv]

Figure 5-13. Using argc/argv

The declaration of argv can be
      simplified as follows:
int main(int argc, char* argv[]) {
This is equivalent to char**
      argv. A more detailed explanation of this notation is found
      in Multiple Levels of Indirection.


Returning Strings



When a function returns a string, it returns the address of the
    string. The main concern is to return a valid string address. To do this,
    we can return a reference to either:
	A literal

	Dynamically allocated memory

	A local string variable



Returning the Address of a Literal



An example of returning a literal is shown below. An integer code
      selects from one of four different processing centers. The function’s
      purpose is to return the processing center’s name as a string. In this
      example, it simply returns the literal’s address:
char* returnALiteral(int code) {
    switch(code) {
        case 100:
            return "Boston Processing Center";
        case 200:
            return "Denver Processing Center";
        case 300:
            return "Atlanta Processing Center";
        case 400:
            return "San Jose Processing Center";            
    }
}
This will work fine. Just keep in mind that string literals are
      not always treated as constants, as discussed in the section When a string literal is not a constant. We can also
      declare static literals as in the following example. A subCode field has been added and selects
      between different centers. The advantage of this approach is not having
      to use the same literal in more than one place and possibly introducing
      errors by mistyping the literal:
char* returnAStaticLiteral(int code, int subCode) {
    static char* bpCenter = "Boston Processing Center";
    static char* dpCenter = "Denver Processing Center";
    static char* apCenter = "Atlanta Processing Center";
    static char* sjpCenter = "San Jose Processing Center";
    
    switch(code) {
        case 100:
            return bpCenter;
        case 135:
            if(subCode <35) {
                return dpCenter;
            } else {
                return bpCenter;
            }
        case 200:
            return dpCenter;
        case 300:
            return apCenter;
        case 400:
            return sjpCenter;            
    }
}
Returning a pointer to a static string used for multiple purposes
      can be a problem. Consider the following variation of the format function developed in the section Passing a String to Be Initialized. Information about a
      part is passed to the function and a formatted string representing the
      string is returned:
char* staticFormat(const char* name, size_t quantity, size_t weight) {
    static char buffer[64];  // Assume to be large enough
    sprintf(buffer, "Item: %s  Quantity: %u  Weight: %u",
            name, quantity, weight);
    return buffer;
}
The buffer is allocated 64 bytes, which may or may not be enough.
      For purposes of this example, we will ignore this potential problem. The
      main problem with this approach is illustrated with the following
      sequence:
    char* part1 = staticFormat("Axle",25,45);
    char* part2 = staticFormat("Piston",55,5);
    printf("%s\n",part1);
    printf("%s\n",part2);
When executed, we get the following output:
Item: Piston  Quantity: 55  Weight: 5
Item: Piston  Quantity: 55  Weight: 5
Since the staticFormat method
      used the same static buffer for both calls, the last call overwrote the
      first call’s results.

Returning the Address of Dynamically Allocated Memory



If a string needs to be returned from a function, the memory for
      the string can be allocated from the heap and then its address can be
      returned. We will demonstrate this technique by developing a blanks function. This function returns a
      string containing a series of blanks representing a “tab,” as shown
      below. The function is passed an integer specifying the tab sequence’s
      length:
char* blanks(int number) {
    char* spaces = (char*) malloc(number + 1);
    int i;    
    for (i = 0; i<number; i++) {
        spaces[i] = ' ';
    }
    spaces[number] = '\0';
    return spaces;
}

    ...
    char *tmp = blanks(5);
The NUL termination character
      is assigned to the last element of the array indexed by number. Figure 5-14 illustrates the
      allocation of memory for this example. It shows the application’s state
      just before and after the blanks
      function returns.
[image: Returning dynamically allocated string]

Figure 5-14. Returning dynamically allocated string

It is the function’s caller’s responsibility to deallocate the
      memory returned. Failure to deallocate it when it is no longer needed
      will result in a memory leak. The following is an example of when a
      memory leak can occur. The string is used within the printf function and its address is
      subsequently lost because it was not saved:
    printf("[%s]\n",blanks(5));
A safer approach is demonstrated below:
    char *tmp = blanks(5);
    printf("[%s]\n",tmp);
    free(tmp);
Returning the address of a local string



Returning the address of a local string will be a problem since
        the memory will be corrupted when it is overwritten by another stack
        frame. This approach should be avoided; it is explained here to
        demonstrate the potential problems with the course of action.
We rewrite the blanks function from the previous section as
        shown below. Instead of dynamically allocating memory, an array is
        declared within the function and will subsequently be located in a
        stack frame. The function returns the array’s address:
#define MAX_TAB_LENGTH 32

char* blanks(int number) {
    char spaces[MAX_TAB_LENGTH];
    int i;    
    for (i = 0; i < number && i < MAX_TAB_LENGTH; i++) {
        spaces[i] = ' ';
    }
    spaces[i] = '\0';
    return spaces;
}
When the function executes it will return the string’s address,
        but that memory area will subsequently be overwritten by the next
        function called. When this pointer is dereferenced, the contents of
        this memory location may have been changed. The program stack’s state
        is illustrated in Figure 5-15.
[image: Returning the address of a local string]

Figure 5-15. Returning the address of a local string




Function Pointers and Strings



Function pointers are discussed in depth in Function Pointers. They can be a flexible means of
    controlling how a program executes. In this section, we will demonstrate
    this capability by passing a comparison function to a sort function.
    Within a sort function, comparison of the array’s elements are made to
    determine whether the array’s elements need to be swapped. The comparison
    determines whether the array is sorted in ascending or descending order,
    or by some other sorting criteria. By passing a function to control the
    comparison, the function is more flexible. By passing different comparison
    functions, we can have the same sort function perform in different
    ways.
The comparison functions we will use determine the sorting order
    based on the case of the array’s elements. The following two functions,
    compare and compareIgnoreCase, compare two strings based on
    the case of the strings. The compareIgnoreCase function converts the strings
    to lower case before it uses the strcmp
    function to compare the strings. The strcmp function was discussed in the section
    Comparing Strings. The stringToLower function returns a pointer to
    dynamically allocated memory. This means we need to free it when we no
    longer need it:
int compare(const char* s1, const char* s2) {
    return strcmp(s1,s2);
}

int compareIgnoreCase(const char* s1, const char* s2) {
    char* t1 = stringToLower(s1);
    char* t2 = stringToLower(s2);
    int result = strcmp(t1, t2);
    free(t1);
    free(t2);
    return result;
}
The stringToLower function is
    shown below. It returns a lowercase equivalent of the string passed to
    it:
char* stringToLower(const char* string) {
    char *tmp = (char*) malloc(strlen(string) + 1);
    char *start = tmp;
    while (*string != 0) {
        *tmp++ = tolower(*string++);
    }
    *tmp = 0;
    return start;
}
The function pointer to be used is declared using a type definition
    as shown below:
typedef int (fptrOperation)(const char*, const char*);
The following sort function’s
    implementation is based on the bubble sort algorithm. It is passed the
    array’s address, its size, and a pointer to the function controlling the
    sort. In the if statement, the function passed is
    invoked with two elements of the array. It determines whether the array’s
    two elements will be swapped.
void sort(char *array[], int size, fptrOperation operation) {
    int swap = 1;
    while(swap) {
        swap = 0;
        for(int i=0; i<size-1; i++) {
            if(operation(array[i],array[i+1]) > 0){
                swap = 1;
                char *tmp = array[i];
                array[i] = array[i+1];
                array[i+1] = tmp;
            }
        }
    }
}
A display function will show the array’s contents:
void displayNames(char* names[], int size) {
    for(int i=0; i<size; i++) {
        printf("%s   ",names[i]);
    }
    printf("\n");
}
We can invoke the sort function
    using either of the two comparison functions. The following uses the
    compare function to perform a
    case-sensitive sort:
    char* names[] = {"Bob", "Ted", "Carol", "Alice", "alice"};
    sort(names,5,compare);
    displayNames(names,5);
The output of this sequence follows:
Alice   Bob   Carol   Ted   alice
If we had used the compareIgnoreCase function instead, then our
    output would appear as shown below:
Alice   alice   Bob   Carol   Ted
This makes the sort function much
    more flexible. We can now devise and pass as simple or complex an
    operation as we want to control the sort without having to write different
    sort functions for different sorting
    needs.

Summary



In this chapter, we focused on string operations and the use of
    pointers. The structure of strings and where they are located in memory
    impacts their use. Pointers provide a flexible tool for working with
    strings but also offer numerous opportunities to misuse strings.
String literals and the use of a literal pool were covered.
    Understanding literals helps explain why certain string assignment
    operations do not always behave as expected. This is closely related to
    string initialization, which was addressed in detail. Several standard
    string operations were examined and potential problems were
    identified.
Passing and returning strings to functions are common operations.
    The issues and potential problems with these type of operations were
    detailed, including the problems potentially occurring when returning a
    local string. The use of a pointer to a constant character was also
    discussed.
Finally, function pointers were used to demonstrate a powerful
    approach for writing sort functions. The approach is not limited to the
    sort operation but can be applied to other areas.

Chapter 6. Pointers and Structures



Structures in C can represent data structure elements, such as the nodes
  of a linked list or tree. Pointers provide the glue that ties these elements
  together. Understanding the versatility supported by pointers for common
  data structures will facilitate your ability to create your own data
  structures. In this chapter, we will explore the fundamentals of structure
  memory allocation in C and the implementation of several common data
  structures.
Structures enhance the utility of collections such as arrays. To
  create an array of entities such as a color type with multiple fields
  without using a structure, it is necessary to declare an array for each
  field and keep each value for a field in the same index of each array.
  However, with a structure, we can declare a single array where each element
  is an instance of the structure.
This chapter expands on the pointer concepts learned so far. This
  includes the introduction of pointer notation as used with structures, a
  discussion of how memory is allocated for a structure, a technique for
  managing memory used by structures, and uses of function pointers.
We will start with a discussion of how memory is allocated for a
  structure. An understanding of this allocation will explain how various
  operations work. This is followed by the introduction of a technique to
  minimize the overhead of heap management.
The last section illustrates how to create a number of data structures
  using pointers. The linked list is discussed first and will serve as the
  basis for several other data structures. The tree data structure is
  discussed last and does not use a linked list.
Introduction



A structure in C can be declared in a number of ways. In this
    section we will only examine two approaches, as our focus is on their use
    with pointers. In the first approach,
    we declare a structure using the struct
    keyword. In the second approach, we use a type definition. In the
    following declaration, the structure’s name is prefixed with an
    underscore. This is not necessary but is often used as a naming
    convention. The _person structure
    includes fields for name, title, and age:
struct _person {
    char* firstName;
    char* lastName;
    char* title;
    unsigned int age;
};
A structure’s declaration frequently uses the typedef keyword to simplify its use later in a
    program. The following illustrates its use with the _person structure:
typedef struct _person {
    char* firstName;
    char* lastName;
    char* title;
    unsigned int age;
} Person;
An instance of a person is declared as follows:
    Person person;
Alternately, we can declare a pointer to a Person and allocate memory for it, as shown
    below:
    Person *ptrPerson;
    ptrPerson = (Person*) malloc(sizeof(Person));
If we use a simple declaration of a structure as we did with
    person, we use the dot notation to
    access its fields. In the following example, we assign values to the
    firstName and age fields:
    Person person;
    person.firstName = (char*)malloc(strlen("Emily")+1);
    strcpy(person.firstName,"Emily");
    person.age = 23;
However, if we are using a pointer to a structure, we need to use the
    points-to operator, as follows. This operator consists of a dash followed
    by the greater than symbol:
    Person *ptrPerson;
    ptrPerson = (Person*)malloc(sizeof(Person));
    ptrPerson->firstName = (char*)malloc(strlen("Emily")+1);
    strcpy(ptrPerson->firstName,"Emily");
    ptrPerson->age = 23;
We do not have to use the points-to operator. Instead, we can
    dereference the pointer first and then apply the dot operator. This is
    illustrated below, where we duplicate the previous assignments:
    Person *ptrPerson;
    ptrPerson = (Person*)malloc(sizeof(Person));
    (*ptrPerson).firstName = (char*)malloc(strlen("Emily")+1);
    strcpy((*ptrPerson).firstName,"Emily");
    (*ptrPerson).age = 23;
This approach is more awkward but you may see it used at times.
How Memory Is Allocated for a Structure



When a structure is allocated memory, the amount allocated to
      the structure is at minimum the sum of the size of its individual
      fields. However, the size is often larger than this sum because padding
      can occur between fields of a structure. This padding can result from
      the need to align certain data types on specific boundaries. For
      example, a short is typically aligned on an address evenly divisible by
      two while an integer is aligned on an address even divisible by
      four.
Several implications are related to this allocation of extra
      memory:
	Pointer arithmetic must be used with care

	Arrays of structures may have extra memory between their
          elements



For example, when an instance of the Person structure presented in the previous
      section is allocated memory, it will be allocated 16 bytes—4 bytes for
      each element. The following alternate version of Person uses a short instead of an unsigned
      integer for age. This will result in
      the same amount of memory being allocated. This is because two bytes are
      padded at the end of the structure:
typedef struct _alternatePerson {
    char* firstName;
    char* lastName;
    char* title;
    short age;    
} AlternatePerson;
In the following sequence, we declare an instance of both a
      Person and an AlternatePerson structure. The structures’
      sizes are then displayed. Their size will be the same, 16 bytes:
    Person person;
    AlternatePerson otherPerson;
    
    printf("%d\n",sizeof(Person));           // Displays 16
    printf("%d\n",sizeof(AlternatePerson));  // Displays 16
If we create an array of AlternatePerson, as shown below, there will be
      padding between the array’s elements. This is illustrated in Figure 6-1. The shaded area shows the
      gaps between the array elements.
    AlternatePerson people[30];
[image: Array of AlternativePerson]

Figure 6-1. Array of AlternativePerson


If we had moved the age field
      between two fields of the structure, the gap would be internal to the
      structure. Depending on how the structure is accessed, this may be
      significant.


Structure Deallocation Issues



When memory is allocated for a structure, the runtime system will
    not automatically allocate memory for any pointers defined within it.
    Likewise, when the structure goes away, the runtime system will not
    automatically deallocate memory assigned to the structure’s
    pointers.
Consider the following structure:
typedef struct _person {
    char* firstName;
    char* lastName;
    char* title;
    uint age;
} Person;
When we declare a variable of this type or dynamically allocate
    memory for this type, the three pointers will contain garbage. In the next
    sequence, we declare a Person. Its
    memory allocation is shown in Figure 6-2. The three dots indicate
    uninitialized memory:
void processPerson() {
   Person person;
   ...
}
[image: Person structure uninitialized]

Figure 6-2. Person structure uninitialized

During the initialization of this structure, each field will be
    assigned a value. The pointer fields will be allocated from the heap and
    assigned to each pointer:
void initializePerson(Person *person, const char* fn, 
        const char* ln, const char* title, uint age) {
    person->firstName = (char*) malloc(strlen(fn) + 1);
    strcpy(person->firstName, fn);
    person->lastName = (char*) malloc(strlen(ln) + 1);
    strcpy(person->lastName, ln);
    person->title = (char*) malloc(strlen(title) + 1);
    strcpy(person->title, title);
    person->age = age;
}
We can use this function as shown below. Figure 6-3 illustrates how memory is
    allocated:
void processPerson() {
   Person person;
   initializePerson(&person, "Peter", "Underwood", "Manager", 36);
    ...
}
int main() {
   processPerson();
   ...
}
[image: Person structure initialized]

Figure 6-3. Person structure initialized

Since this declaration was part of a function, when the function
    returns the memory for person will go
    away. However, the dynamically allocated strings were not released and are
    still in the heap. Unfortunately, we have lost their address and we cannot
    free them, resulting in a memory leak.
When we are through with the instance, we need to deallocate the
    memory. The following function will free up the memory we previously
    allocated when we created the instance:
void deallocatePerson(Person *person) {
    free(person->firstName);
    free(person->lastName);
    free(person->title);
}
This function needs to be invoked before the function
    terminates:
void processPerson() {
   Person person;
   initializePerson(&person, "Peter", "Underwood", "Manager", 36);
    ...
   deallocatePerson(&person);
}
Unfortunately, we must remember to call the
    initialize and deallocate functions.
    The automatic invocation of these operations against an object is
    performed in object-oriented programming languages such as C++.
If we use a pointer to a Person,
    we need to remember to free up the person as shown below:
void processPerson() {
    Person *ptrPerson;
    ptrPerson = (Person*) malloc(sizeof(Person));
    initializePerson(ptrPerson, "Peter", "Underwood", "Manager", 36);
      ...
    deallocatePerson(ptrPerson);
    free(ptrPerson);
}
Figure 6-4 illustrates how
    memory is allocated.
[image: Pointer to a person instance]

Figure 6-4. Pointer to a person instance


Avoiding malloc/free Overhead



When structures are allocated and then deallocated repeatedly,
    some overhead will be incurred, resulting in a potentially significant
    performance penalty. One approach to deal with this problem is to maintain
    your own list of allocated structures. When a user no longer needs an
    instance of a structure, it is returned to the pool. When an instance is
    needed, it obtains the object from the pool. If there are no elements
    available in the pool, a new instance is dynamically allocated. This
    approach effectively maintains a pool of structures that can be used and
    reused as needed.
To demonstrate this approach we will use the Person structure previously defined. A pool of
    persons is maintained in an array. A more complex list, such as a linked
    list, can also be used, as illustrated in the section Single-Linked List. To keep this example simple, an
    array of pointers is used, as declared below:
#define LIST_SIZE 10
Person *list[LIST_SIZE];
Before the list can be used, it needs to be initialized. The
    following function assigns NULL to each
    element of the array:
void initializeList() {
    for(int i=0; i<LIST_SIZE; i++) {
        list[i] = NULL;
    }
}
Two functions are used to add and retrieve persons. The first is the
    getPerson function, as shown below.
    This function retrieves a person from the list if possible. The array’s
    elements are compared to NULL. The
    first non-null element is returned, and its position in list is then assigned a value of NULL. If there is no person available, then a
    new instance of a Person is created and
    returned. This avoids the overhead of dynamically allocating memory for a
    person every time a new one is needed. We only allocate memory if there is
    none in the pool. The initialization of the instance returned can be done
    either before it is returned or by the caller, depending on the needs of
    the application:
Person *getPerson() {
    for(int i=0; i<LIST_SIZE; i++) {
        if(list[i] != NULL) {
            Person *ptr = list[i];
            list[i] = NULL;
            return ptr;
        }
    }
    Person *person = (Person*)malloc(sizeof(Person));
    return person;
}
The second function is the returnPerson, which either adds the person to
    the list or frees it up. The array’s elements are checked to see whether
    there are any NULL values. If it does,
    then person is added to that position
    and the pointer is returned. If the list is full, then the pointers within
    person are freed using the deallocatePerson function, person is freed, and then NULL is returned:
Person *returnPerson(Person *person) {
    for(int i=0; i<LIST_SIZE; i++) {
        if(list[i] == NULL) {
            list[i] = person;
            return person;
        }
    }
    deallocatePerson(person);
    free(person);
    return NULL;
}
The following illustrates the initialization of the list and adding
    a person to the list:
    initializeList();
    Person *ptrPerson;

    ptrPerson = getPerson();
    initializePerson(ptrPerson,"Ralph","Fitsgerald","Mr.",35);
    displayPerson(*ptrPerson);
    returnPerson(ptrPerson);
One problem associated with this approach deals with the list size.
    If the list is too small, then more dynamic allocation and deallocation of
    memory will be necessary. If the list is large and the structures are not
    being used, a potentially large amount of memory may be tied up and
    unavailable for other uses. A more sophisticated list management scheme
    can be used to manage the list’s size.

Using Pointers to Support Data Structures



Pointers can provide more flexible support for simple and complex
    data structures. The flexibility can be attributed to the dynamic
    allocation of memory and the ease of changing pointer references. The
    memory does not have to be contiguous, as is the case with arrays. Only
    the exact amount of memory needs to be allocated.
In this section, we will examine how several commonly used data
    structures can be implemented using pointers. Numerous C libraries provide
    equivalent and more extensive support than those illustrated here.
    However, understanding how they can be implemented can prove to be useful
    when implementing nonstandard data structures. On some platforms, the
    libraries may not be available, and the developer will need to implement
    their own version.
We will examine four different data structures:
	Linked list
	A single-linked list

	Queue
	A simple first-in first-out queue

	Stack
	A simple stack

	Tree
	A binary tree



Along with these data structures, we will incorporate function
    pointers to illustrate their power in dealing with generic structures. The
    linked list is a very useful data structure, and we will use it as the
    foundation of the queue’s and stack’s implementation.
We will illustrate each of these data structures using an employee
    structure. For example, a linked list consists of nodes connected to one
    another. Each node will hold user-supplied data. The simple employee
    structure is listed below. The unsigned
    char data type is used for age, as this will be large enough to
    hold people’s ages:
typedef struct _employee{
    char name[32];
    unsigned char age;
} Employee;
A simple array is used for a single name. While a pointer to
    char may prove to be a more flexible
    data type for this field, we have elected to use an array of char to simplify the examples.
Two comparison functions will be developed. The first one compares
    two employees and returns an integer. This function is modeled after the
    strcmp function. A return value of 0
    means the two employee structures are considered to be equal to each
    other. A return value of –1 means the first employee precedes the second
    employee alphabetically. A return value of 1 means the first employee
    follows the second employee. The second function displays a single
    employee:
int compareEmployee(Employee *e1, Employee *e2) {
    return strcmp(e1->name, e2->name);
}

void displayEmployee(Employee* employee) {
    printf("%s\t%d\n", employee->name, employee->age);
}
In addition, two function pointers will be used as defined below.
    The DISPLAY function pointer designates
    a function that is passed void and returns void. Its intent is to display
    data. The second pointer, COMPARE,
    represents a function used to compare data referenced by two pointers. The
    function should compare the data and return either a 0, –1, or 1, as explained with the compareEmployee
    function:
typedef void(*DISPLAY)(void*);
typedef int(*COMPARE)(void*, void*);
Single-Linked List



A linked list is a data structure that consists of a series
      of nodes interconnected with links. Typically, one node is called the
      head node and subsequent nodes follow the head, one after another. The
      last node is called the tail. The links connecting
      the nodes are easily implemented using a pointer. Each node can be
      dynamically allocated as needed.
This approach is preferable to an array of nodes. Using an array
      results in the creation of a fixed number of nodes regardless of how
      many nodes may be needed. Links are implemented using the index of the
      array’s elements. Using an array is not as flexible as using dynamic
      memory allocation and pointers.
For example, if we wanted to change the order of elements of the
      array, it would be necessary to copy both elements, and that can be
      large for a structure. In addition, adding or removing an element may
      require moving large portions of the array to make room for the new
      element or to remove an existing element.
There are several types of linked lists. The simplest is a
      single-linked list where there is a single link from one node to the
      next. The links start at the head and eventually leads to the tail. A
      circular-linked list has no tail. The linked list’s last node points
      back to the head. A doubly linked list uses two links, one pointing
      forward and one pointing backward so that you can navigate through the
      list in both directions. This type of linked list is more flexible but
      is more difficult to implement. Figure 6-5
      conceptually illustrates these types of linked lists.
[image: Linked list types]

Figure 6-5. Linked list types

In this section, we will illustrate the construction and use of a
      single-linked list. The following shows the structure used to support
      the linked list. A Node structure is
      defined to represent a node. It consists of two pointers. The first one,
      a pointer to void, holds an arbitrary data type. The second is a pointer
      to the next node. The LinkedList
      structure represents the linked list and holds a pointer to the head and
      the tail. The current pointer will help traverse the linked list:
typedef struct _node {
    void *data;
    struct _node *next;
} Node;

typedef struct _linkedList {
    Node *head;
    Node *tail;
    Node *current;
} LinkedList;
We will develop several functions that use these structures to
      support linked list functionality:
	void initializeList(LinkedList*)	Initializes the linked list
	void addHead(LinkedList*, void*)	Adds data to the linked list’s head
	void addTail(LinkedList*, void*)	Adds data to the linked list’s tail
	void delete(LinkedList*, Node*)	Removes a node from the linked list
	Node *getNode(LinkedList*, COMPARE, void*)	Returns a pointer to the node containing a specific data
              item
	void displayLinkedList(LinkedList*, DISPLAY)	Displays the linked list


Before the linked list can be used it needs to be initialized. The
      initializeList function, shown below,
      performs this task. A pointer to the LinkedList object is passed to the function
      where each pointer in the structure is set to NULL:
void initializeList(LinkedList *list) {
    list->head = NULL;
    list->tail = NULL;
    list->current = NULL;
}
The addHead and addTail functions add data to the linked
      list’s head and tail, respectively. In this linked list implementation,
      the add and delete functions are
      responsible for allocating and freeing memory used by the linked list’s
      nodes. This removes this responsibility from the user of the linked
      list.
In the addHead function listed
      below, memory is first allocated for the node and the data passed to the
      function is assigned to the structure’s data field. By passing the data as a pointer
      to void, the linked list is able to hold any type of data the user wants
      to use.
Next, we check to see whether the linked list is empty. If so, we
      assign the tail pointer to the node and assign NULL to the node’s next
      field. If not, the node’s next
      pointer is assigned to the list’s head. Regardless, the list’s head is
      assigned to the node:
void addHead(LinkedList *list, void* data) {
    Node *node = (Node*) malloc(sizeof(Node));
    node->data = data;
    if (list->head == NULL) {
        list->tail = node;
        node->next = NULL;
    } else {
        node->next = list->head;
    }
    list->head = node;
}
The following code sequence illustrates using the initializeList and addHead functions. Three employees are added
      to the list. Figure 6-6 shows how memory is
      allocated after these statements execute. Some arrows have been removed
      to simplify the diagram. In addition, the Employee structure’s name array has been simplified:
    LinkedList linkedList;

    Employee *samuel = (Employee*) malloc(sizeof(Employee));
    strcpy(samuel->name, "Samuel");
    samuel->age = 32;

    Employee *sally = (Employee*) malloc(sizeof(Employee));
    strcpy(sally->name, "Sally");
    sally->age = 28;

    Employee *susan = (Employee*) malloc(sizeof(Employee));
    strcpy(susan->name, "Susan");
    susan->age = 45;

    initializeList(&linkedList);

    addHead(&linkedList, samuel);
    addHead(&linkedList, sally);
    addHead(&linkedList, susan);
[image: addHead example]

Figure 6-6. addHead example

The addTail function is shown
      below. It starts by allocating memory for a new node and assigning the
      data to the data field. Since the
      node will always be added to the tail, the node’s next field is assigned to NULL. If the linked list is empty, then the
      head pointer will be NULL and head can be assigned to the new node. If it is
      not NULL, then the tail’s next pointer is assigned to the new node.
      Regardless, the linked list’s tail
      pointer is assigned to the node:
void addTail(LinkedList *list, void* data) {
    Node *node = (Node*) malloc(sizeof(Node));
    node->data = data;
    node->next = NULL;
    if (list->head == NULL) { 
        list->head = node;
    } else {
        list->tail->next = node;
    }
    list->tail = node;
}
In the following sequence, the addTail function is illustrated. The creation
      of the employee objects has not been duplicated here. The employees have
      been added in the opposite order from the previous example using the
      addTail function. This results in the
      memory allocation being the same as shown in Figure 6-6:
    initializeList(&linkedList);

    addTail(&linkedList, susan);
    addTail(&linkedList, sally);
    addTail(&linkedList, samuel);
The delete function will remove
      a node from the linked list. To simplify this function, a pointer to the
      node to be deleted is passed to it. The function’s user probably has a
      pointer to the data but not to the node holding the data. To aid in
      identifying the node, a helper function has been provided to return a
      pointer to the node: getNode. The
      getNode function is passed three
      parameters:
	A pointer to the linked list

	A pointer to a comparison function

	A pointer to the data to be found



The code for the getNode
      function follows. The variable node
      initially points to the list’s head and traverses the list until either
      a match is found or the linked list’s end is encountered. The compare function is invoked to determine
      whether a match is found. When the two data items are equal, it returns
      a zero.
Node *getNode(LinkedList *list, COMPARE compare , void* data) {
    Node *node = list->head;
    while (node != NULL) {
        if (compare(node->data, data) == 0) {
            return node;
        }
        node = node->next;
    }
    return NULL;
}
The compare function
      illustrates using a function pointer at runtime to determine which
      function to use to perform a comparison. This adds considerable
      flexibility to the linked list implementation because we do not need to
      hard code the comparison function’s name in the getNode function.
The delete function follows. To
      keep the function simple, it does not always check for null values in
      the linked list or the node passed. The first if
      statement handles a node to be deleted from the head. If the head node
      is the only node, then the head and tail are assigned null values.
      Otherwise, the head is assigned to the node following the head.
The else statement
      traverses the list from head to tail using a tmp pointer. The while loop
      will terminate if either tmp is
      assigned NULL, indicating the node
      does not exist in the list, or the node following tmp is the node we are looking for. Since this
      is a single-linked list, we need to know which node precedes the target
      node to be deleted. This knowledge is needed to assign the node
      following the target node to the preceding node’s next field. At the end of the delete function, the node is freed. The user
      is responsible for deleting the data pointed to by this node before the
      delete function is called.
void delete(LinkedList *list, Node *node) {
    if (node == list->head) {
        if (list->head->next == NULL) { 
            list->head = list->tail = NULL;
        } else {
            list->head = list->head->next;
        }
    } else {
        Node *tmp = list->head;
        while (tmp != NULL && tmp->next != node) {
            tmp = tmp->next;
        }
        if (tmp != NULL) {
            tmp->next = node->next;
        } 
    }
    free(node);
}
The next sequence demonstrates the use of this function. The three
      employees are added to the linked list’s head. We will use the compareEmployee function as described in the
      section Using Pointers to Support Data Structures
      to perform comparisons:
    addHead(&linkedList, samuel);
    addHead(&linkedList, sally);
    addHead(&linkedList, susan);

    Node *node = getNode(&linkedList,
            (int (*)(void*, void*))compareEmployee, sally);
    delete(&linkedList, node);
When this sequence executes, the program stack and heap will
      appear as illustrated in Figure 6-7.
[image: Deletion example]

Figure 6-7. Deletion example

The displayLinkedList function
      illustrates how to traverse a linked list as shown below. It starts at
      the head and displays each element using the function passed as the
      second argument. The node pointer is assigned the next field’s value and will terminate when the
      last node is displayed:
void displayLinkedList(LinkedList *list, DISPLAY display) {
    printf("\nLinked List\n");
    Node *current = list->head;
    while (current != NULL) {
        display(current->data);
        current = current->next;
    }
}
The following illustrates this function using the displayEmployee function developed in the
      section Using Pointers to Support Data Structures:
    addHead(&linkedList, samuel);
    addHead(&linkedList, sally);
    addHead(&linkedList, susan);

    displayLinkedList(&linkedList, (DISPLAY)displayEmployee);
The output of this sequence follows:
Linked List
Susan     45
Sally     28
Samuel    32

Using Pointers to Support a Queue



A queue is a linear data structure whose behavior is similar
      to a waiting line. It typically supports two primary operations: enqueue
      and dequeue. The enqueue operation adds an element to the queue. The
      dequeue operation removes an element from the queue. Normally, the first
      element added to a queue is the first element dequeued from a queue.
      This behavior is referred to as First-In-First-Out (FIFO).
A linked list is frequently used to implement a queue. The enqueue
      operation will add a node to the linked list’s head and the dequeue
      operation will remove a node from the tail. To illustrate the queue, we
      will use the linked list developed in the Single-Linked List.
Let’s start by using a type definition statement to define a term
      for queue. It will be based on a linked list as shown below. We can now
      use Queue to clearly designate our
      intent:
typedef LinkedList Queue;
To implement the initialization operation, all we need to do is
      use the function initializeList. Instead of calling this
      function directly, we will use the following initializeQueue function:
void initializeQueue(Queue *queue) {
    initializeList(queue);
}
In a similar manner, the following will add a node to a queue
      using the addHead function:
void enqueue(Queue *queue, void *node) {
    addHead(queue, node);
}
The previous linked list implementation does not have an explicit
      function to remove the tail node. The dequeue function that follows removes the last
      node. Three conditions are handled:
	An empty queue
	NULL is returned

	A single node queue
	Handled by the else if statement

	A multiple node queue
	Handled by the else clause



In the latter case, the tmp
      pointer is advanced node by node until it points to the node immediately
      preceding the tail node. Three operations are then performed in the
      following sequence:
	The tail is assigned to the tmp node

	The tmp pointer is advanced
          to the next node

	The tail’s next field is
          set to NULL to indicate there are
          no more nodes in the queue



This order is necessary to ensure the list’s integrity, as
      illustrated conceptually in Figure 6-8. The circled numbers
      correspond to the three steps listed above:
void *dequeue(Queue *queue) {
    Node *tmp = queue->head;
    void *data;

    if (queue->head == NULL) {
        data = NULL;
    } else if (queue->head == queue->tail) {
        queue->head = queue->tail = NULL;
        data = tmp->data;
        free(tmp);
    } else {
        while (tmp->next != queue->tail) {
            tmp = tmp->next;
        }
        queue->tail = tmp;
        tmp = tmp->next;
        queue->tail->next = NULL;
        data = tmp->data;
        free(tmp);
    }
    return data;
}
[image: dequeue function example]

Figure 6-8. dequeue function example


The data assigned to the node is returned, and the node is freed.
      These functions are illustrated in the following code sequence using the
      employees created earlier:
    Queue queue;
    initializeQueue(&queue);

    enqueue(&queue, samuel);
    enqueue(&queue, sally);
    enqueue(&queue, susan);
    
    void *data = dequeue(&queue);
    printf("Dequeued %s\n", ((Employee*) data)->name);
    data = dequeue(&queue);
    printf("Dequeued %s\n", ((Employee*) data)->name);
    data = dequeue(&queue);
    printf("Dequeued %s\n", ((Employee*) data)->name);
The output of this sequence follows:
Dequeued Samuel
Dequeued Sally
Dequeued Susan

Using Pointers to Support a Stack



The stack data structure is also a type of list. In this
      case, elements are pushed onto the stack’s top and then popped off. When
      multiple elements are pushed and then popped, the stack exhibits
      First-In-Last-Out (FILO) behavior. The first element pushed on to the
      stack is the last element popped off.
Like the queue’s implementation, we can use a linked list to
      support stack operations. The two most common operations are the push
      and pop operations. The push operation is effected using the addHead function. The pop operation requires
      adding a new function to remove the head node. We start by defining a
      stack in terms of a linked list as follows:
typedef LinkedList Stack;
To initialize the stack, we add an initializeStack function. This function calls
      the initializeList function:
void initializeStack(Stack *stack) {
    initializeList(stack);
}
The push operation calls the addHead function as shown below:
void push(Stack *stack, void* data) {
    addHead(stack, data);
}
The pop operation’s implementation follows. We start by assigning
      the stack’s head to a node pointer.
      It involves handling three conditions:
	The stack is empty
	The function returns NULL

	The stack contains a single element
	If the node points to the tail then the head and tail are
            the same element. The head and tail are assigned NULL, and the data is returned.

	The stack contains more than one element
	In this case, the head is assigned to the next element in
            the list, and the data is returned.



In the latter two cases, the node is freed:
void *pop(Stack *stack) {
    Node *node = stack->head;
    if (node == NULL) {
        return NULL;
    } else if (node == stack->tail) {
        stack->head = stack->tail = NULL;
        void *data = node->data;
        free(node);
        return data;
    } else {
        stack->head = stack->head->next;
        void *data = node->data;
        free(node);
        return data;
    }
}
We will reuse the employees’ instances created in the section
      Single-Linked List to demonstrate the stack. The
      following code sequence will push three employees and then pop them off
      the stack:
    Stack stack;
    initializeStack(&stack);

    push(&stack, samuel);
    push(&stack, sally);
    push(&stack, susan);

    Employee *employee;
    
    for(int i=0; i<4; i++) {
        employee = (Employee*) pop(&stack);
        printf("Popped %s\n", employee->name);
    }
When executed, we get the following output. Because we used the
      pop function four times, NULL was
      returned the last time:
Popped Susan
Popped Sally
Popped Samuel
Popped (null)
Other stack operations sometime include a peek operation where the
      top element is returned but is not popped off the stack.

Using Pointers to Support a Tree



The tree is a very useful data structure whose name is
      derived from the relationship between its elements. Typically, child
      nodes are attached to a parent node. The overall form is an inverted
      tree where a root node represents the data structure’s starting
      element.
A tree can have any number of children nodes. However, binary
      trees are more common where each node possesses zero, one, or two
      children nodes. The children are designated as either the left child or
      the right child. Nodes with no children are called leaf nodes, similar
      to the leaves of a tree. The examples presented in this section will
      illustrate a binary tree.
Pointers provide an obvious and dynamic way of maintaining the
      relationship between tree nodes. Nodes can be dynamically allocated and
      added to a tree as needed. We will use the following structure for a
      node. Using a pointer to void allows us to handle any type of data that
      we need:
typedef struct _tree {
    void *data;
    struct _tree *left;
    struct _tree *right;
} TreeNode;
When we add nodes to a tree, it makes sense to add them in a
      particular order. This will make many operations, such as searching,
      easier. A common ordering is to add a new node to a tree such that all
      of the node’s children possess a value less than the parent node and all
      of the children on the right possess a value greater than the parent
      node. This is called a binary search tree.
The following insertNode
      function will insert a node into a binary search tree. However, to
      insert a node, a comparison needs to be performed between the new node
      and the tree’s existing nodes. We use the COMPARE function pointer to pass the
      comparison function’s address. The first part of the function allocates
      memory for a new node and assigns the data to the node. The left and
      right children are set to NULL since
      new nodes are always added as leaves to a tree:
void insertNode(TreeNode **root, COMPARE compare, void* data) {
    TreeNode *node = (TreeNode*) malloc(sizeof(TreeNode));
    node->data = data;
    node->left = NULL;
    node->right = NULL;

    if (*root == NULL) {
        *root = node;
        return;
    }

    while (1) {
        if (compare((*root)->data, data) > 0) {
            if ((*root)->left != NULL) {
                *root = (*root)->left;
            } else {
                (*root)->left = node;
                break;
            }
        } else {
            if ((*root)->right != NULL) {
                *root = (*root)->right;
            } else {
                (*root)->right = node;
                break;
            }
        }
    }
}
First, the root is checked to determine whether the tree is empty.
      If it is, then a new node is assigned to the root and the function
      returns. The root is passed as a pointer to a pointer to a TreeNode. This is necessary because we want to
      modify the pointer passed to the function, not what the pointer points
      to. This use of two levels of indirection is detailed in Multiple Levels of Indirection.
If the tree is not empty, then an infinite loop is entered and
      will terminate when the new node has been added to the tree. With each
      loop’s iteration, the new node and current parent node are compared. On
      the basis of this comparison, the local root pointer will be reassigned to either the
      left or right child. This root
      pointer points to the current node in the tree. If the left or right
      child is NULL, then the node is added
      as a child and the loop terminates.
To demonstrate insertNode
      function, we will reuse the employee instances created in the section
      Using Pointers to Support Data Structures. The
      following sequence initializes an empty TreeNode and then inserts the three employees.
      The resulting program stack’s and heap’s state is illustrated in Figure 6-9. Some lines pointing to the
      employees have been removed to simplify the diagram. The nodes’
      placement in the heap have also been arranged to reflect the tree
      structure’s order:
    TreeNode *tree = NULL;

    insertNode(&tree, (COMPARE) compareEmployee, samuel);
    insertNode(&tree, (COMPARE) compareEmployee, sally);
    insertNode(&tree, (COMPARE) compareEmployee, susan);
[image: insertNode function]

Figure 6-9. insertNode function

Figure 6-10 illustrates the
      logical structure of this tree.
[image: Logical tree organization]

Figure 6-10. Logical tree organization

Binary trees are used for a number of purposes and can be
      traversed in three different ways: pre-order, in-order, and post-order.
      The three techniques use the same steps, but they are performed in
      different orders. The three steps are:
	Visit the node
	Process the node

	Go left
	Transfer to the left node

	Go right
	Transfer to the right node



For our purposes, visiting a node means we will display its
      contents. The three orders are:
	In-order
	Go left, visit the node, go right

	Pre-order
	Visit the node, go left, go right

	Post-order
	Go left, go right, visit the node



The functions’ implementations are shown below. Each passes the
      tree’s root and a function pointer for the display function. They are
      recursive and will call themselves as long as the root node passed to it
      is not null. They only differ in the order the three steps are
      executed:
void inOrder(TreeNode *root, DISPLAY display) {
    if (root != NULL) {
        inOrder(root->left, display);
        display(root->data);
        inOrder(root->right, display);
    }
}

void postOrder(TreeNode *root, DISPLAY display) {
    if (root != NULL) {
        postOrder(root->left, display);
        postOrder(root->right, display);
        display(root->data);
    }
}

void preOrder(TreeNode *root, DISPLAY display) {
    if (root != NULL) {
        display(root->data);
        preOrder(root->left, display);
        preOrder(root->right, display);
    }
}
The following code sequence invokes these functions:
    preOrder(tree, (DISPLAY) displayEmployee);
    inOrder(tree, (DISPLAY) displayEmployee);
    postOrder(tree, (DISPLAY) displayEmployee);
Table 6-1 shows the output of
      each function call based on the previous initialization of the
      tree.
Table 6-1. Traversal techniques
	pre-order	Samuel 32 Sally 28 Susan 45
	in-order	Sally 28 Samuel 32 Susan 45
	post-order	Sally 28 Susan 45 Samuel 32



The in-order traversal will return a sorted list of the tree’s
      members. The pre-order and post-order traversal can be used to evaluate
      arithmetic expressions when used in conjunction with a stack and
      queue.

Summary



The power and flexibility of pointers is exemplified when used to
      create and support data structures. Combined with dynamic memory
      allocation of structures, pointers enable the creation of data
      structures that use memory efficiently and can grow and shrink to meet
      the application’s needs.
We started this chapter with a discussion of how memory is
      allocated for structures. Padding between the field’s structures and
      between arrays of structures is possible. Dynamic memory allocation and
      deallocation can be expensive. We examined one technique to maintain a
      pool of structures to minimize this overhead.
We also demonstrated the implementation of several commonly used
      data structures. The linked list was used to support several of these
      data structures. Function pointers were used to add flexibility to these
      implementations by allowing the comparison or display function to be
      determined at runtime.


Chapter 7. Security Issues and the Improper Use of Pointers



Few applications exist where security and reliability are not
  significant concerns. This concern is reinforced by frequent reports of
  security breaches and application failures. The responsibility of securing
  an application largely falls on the developer. In this chapter, we will
  examine practices to make applications more secure and reliable.
Writing secure applications in C can be difficult because of several
  inherent aspects of the language. For example, C does not prevent the
  programmer from writing outside an array’s bounds. This can result in
  corrupted memory and introduce potential security risks. In addition, the improper use of
  pointers is often at the root of many security problems.
When an application behaves in unpredictable ways, it may not seem to
  be a security issue, at least in terms of unauthorized access. However, it
  is sometimes possible to take advantage of this behavior, which can result
  in a denial of service and thus compromise the application. Unpredictable
  behavior that results from improper use of pointers has been illustrated
  elsewhere in this book. In this chapter, we will identify additional
  improper usages of pointers.
The CERT organization
  is a good source for a more comprehensive treatment of security issues in C
  and other languages. This organization studies Internet security
  vulnerabilities. We will focus on those security issues related to the use
  of pointers. Many of the CERT organization’s security concerns can be traced
  back to the improper use of pointers. Understanding pointers and the proper
  ways to use them is an important tool for developing secure and reliable
  applications. Some of these topics have been addressed in earlier chapters,
  not necessarily from a security standpoint but rather from a programming
  practice standpoint.
There have been improvements in security introduced by operating
  systems (OS). Some of these improvements are reflected in how memory is
  used. Although improvements are typically beyond the control of developers,
  they will affect the program. Understanding these issues will help explain
  an application’s behavior. We will focus on Address Space Layout
  Randomization and Data Execution
  Prevention.
The Address Space Layout Randomization
  (ASLR) process arranges an application’s data region randomly in memory.
  These data regions include the code, stack, and heap. Randomizing the
  placement of these regions makes it more difficult for attackers to predict
  where memory will be placed and thus more difficult to use them.
  Certain types of attacks, such as the
  return-to-libc attack, overwrite portions of the
  stack and transfer control to this region. This area is frequently the
  shared C library, libc. If the location
  of the stack and libc are not known, then
  such attacks will be less likely to succeed.
The Data Execution Prevention (DEP)
  technique prevents the execution of code if it is in a nonexecutable region
  of memory. In some types of attacks, a region of memory is overwritten with
  a malicious code and then control is transferred to it. If this region of
  code is nonexecutable, such as the stack or heap, then it is prevented from
  executing. This technique can be implemented either in hardware or in
  software.
In this chapter, we will examine security issues from several
  perspectives:
	Declaration and initialization of pointers

	Improper pointer usage

	Deallocation problems



Pointer Declaration and Initialization



Problems can arise with the declaration and initialization of
    pointers or, more correctly, the failure to initialize pointers. In this
    section, we will examine situations where these types of problems can
    occur.
Improper Pointer Declaration



Consider the following declaration:
   int* ptr1, ptr2;
There is nothing necessarily wrong with the declaration; however,
      it may not be what was intended. This declaration declared ptr1 as a pointer to an integer and ptr2 as an integer. The asterisk was purposely
      placed next to the data type, and a space was placed before ptr1. This placement makes no difference to
      the compiler, but to the reader, it may imply that both ptr1 and ptr2 are declared as pointers to integers.
      However, only ptr1 is a
      pointer.
The correct approach is to declare them both as pointers using a
      single line, as shown below:
   int *ptr1, *ptr2;
Note
It is an even better practice to declare each variable on its
        own line.

Another good practice involves using type definitions instead of
      macro definitions. These definitions allow the compiler to check scoping
      rules, which is not always true with macro definitions.
Variables may be declared with the assistance of a directive, as
      shown below. Here, a pointer to an integer is wrapped in a define directive and then used to declare
      variables:
#define PINT int* 
PINT ptr1, ptr2;
However, the result is the same problem as described above. A better
      approach is shown below using a type definition:
typedef int* PINT;
PINT ptr1, ptr2;
Both variables are declared as pointers to integers.

Failure to Initialize a Pointer Before It Is Used



Using a pointer before it is initialized can result in a
      run-time error. This is sometimes referred to as a wild
      pointer. A simple example follows where a pointer to an
      integer is declared but is never assigned a value before it is
      used:
   int *pi;
   ...
   printf(“%d\n”,*pi);
Figure 7-1 illustrates how memory is allocated at
      this point.
[image: Wild pointer]

Figure 7-1. Wild pointer

The variable pi has not been
      initialized and will contain garbage, indicated by the ellipses.
      Most likely this sequence will terminate during execution if
      the memory address stored in pi is
      outside the valid address space for the application. Otherwise, the
      value displayed will be whatever happens to be at that address and will
      be presented as an integer. If we use a pointer to a string instead, we
      will frequently see a series of strange characters displayed until the
      terminating zero is reached.

Dealing with Uninitialized Pointers



Nothing inherent in a pointer tells us whether it is valid. Thus,
      we cannot simply examine its contents to determine whether it is valid.
      However, three approaches are used to deal with uninitialized
      pointers:
	Always initialize a pointer with NULL

	Use the assert
          function

	Use third-party tools



Initializing a pointer to NULL will
      make it easier to check for proper usage. Even then, checking for a null
      value can be tedious, as shown below:
   int *pi = NULL;
   ...
   if(pi == NULL) {
      // pi should not be dereferenced
   } else {
      // pi can be used
   }
The assert function can
      also be used to test for null pointer values. In the following example,
      the pi variable is tested for a null
      value. If the expression is true, then nothing happens. If the
      expression is false, then the program terminates. Thus, the program will
      terminate if the pointer is null.
   assert(pi != NULL);
For debug versions of the application, this approach may be
      acceptable. If the pointer is null, then the output will appear similar
      to the following:
Assertion failed: pi != NULL
The assert function is
      found in the assert.h header
      file.
Third-party tools can also be used to help identify these types of
      problems. In addition, certain compiler options can be useful, as
      addressed in the section Using Static Analysis Tools.


Pointer Usage Issues



In this section, we will examine misuse of the dereference operator
    and array subscripts. We will also examine problems related to strings,
    structures, and function pointers.
Many security issues revolve around the concept of a buffer
    overflow. Buffer overflow occurs when memory outside the object’s bounds
    is overwritten. This memory may be part of the program’s address space or
    another process. When the memory is outside of the program address space, most
    operating systems will issue a segmentation fault and terminate the
    program. Termination for this reason constitutes a denial of service attack when
    done maliciously. This type of attack does not attempt to gain
    unauthorized access but tries to take down the application and potentially
    a server.
If the buffer overflow occurs within the application’s address
    space, then it can result in unauthorized access to data and/or the
    transfer of control to another segment of code, thereby potentially
    compromising the system. This is of particular concern if the application
    is executing with supervisor privileges.
Buffer overflow can happen by:
	Not checking the index values used when accessing an array’s
        elements

	Not being careful when performing pointer arithmetic with array
        pointers

	Using functions such as gets
        to read in a string from standard input

	Using functions such as strcpy and strcat improperly



When buffer overflow occurs with a stack frame element, it is
    possible to overwrite the return address portion of the stack frame with a
    call to malicious code created at the same time. See Program Stack and Heap for more detail about the stack
    frame. When the function returns, it will transfer control to the
    malicious function. This function can then perform any operation,
    restrained only by the current user’s privilege level.
Test for NULL



Always check the return value when using a malloc type function. Failure to do so can
      result in abnormal termination of the program. The following illustrates
      the general approach:
    float *vector = malloc(20 * sizeof(float));
    if(vector == NULL) {
        // malloc failed to allocate memory
    } else {
        // Process vector
    }

Misuse of the Dereference Operator



A common approach for declaring and initializing a pointer
      is shown below:
   int num;
   int *pi = &num;
Another seemingly equivalent declaration sequence follows:
   int num;
   int *pi;
   *pi = &num;
However, this is not correct. Notice the use of the dereference
      operator on the last line. We are attempting to assign the address of
      num not to pi but rather to the memory location specified
      by the contents of pi. The pointer,
      pi, has not been initialized yet. We
      have made a simple mistake of misusing the dereference operator. The
      correct sequence follows:
   int num;
   int *pi;
   pi = &num;
In the original declaration, int *pi =
      &num, the asterisk declared the variable to be a pointer.
      It was not used as the dereference operator.

Dangling Pointers



A dangling pointer occurs when a pointer is freed but still
      references that memory. This problem is described in detail in Dangling Pointers. If an attempt is made to access this
      memory later, then its contents may well have changed. A write operation
      against this memory may corrupt memory, and a read operation may return
      invalid data. Either could potentially result in the termination of the
      program.
This has not been considered a security concern until recently. As
      explained in Dangling
      Pointer, there exists a potential for exploiting a dangling
      pointer. However, this approach is based on the exploitation of the
      VTable (Virtual Table) in C++. A VTable is an
      array of function pointers used to support virtual methods in C++.
      Unless you are using a similar approach involving function pointers,
      this should not be a concern in C.

Accessing Memory Outside the Bounds of an Array



Nothing can prevent a program from accessing memory outside of
      the space allocated for an array. In this example, we declare and
      initialize three arrays to demonstrate this behavior. The arrays are
      assumed to be allocated in consecutive memory locations.
    char firstName[8] = "1234567";
    char middleName[8] = "1234567";
    char lastName[8] = "1234567";

    middleName[-2] = 'X';
    middleName[0] = 'X';
    middleName[10] = 'X';

    printf("%p  %s\n",firstName,firstName);
    printf("%p  %s\n",middleName,middleName);
    printf("%p  %s\n",lastName,lastName);
To illustrate how memory is overwritten, three arrays are
      initialized to a simple sequence of numbers. While the behavior of the
      program will vary by compiler and machine, this will normally execute
      and overwrite characters in firstName
      and lastName. The output is shown
      below. Figure 7-2 illustrates how
      memory is allocated:
116  12X4567
108  X234567
100  123456X
[image: Using invalid array indexes]

Figure 7-2. Using invalid array indexes

As explained in Chapter 4, the
      address calculated using subscripts does not check the index values.
      This is a simple case of buffer overflow.

Calculating the Array Size Incorrectly



When passing an array to a function, always pass the size of
      the array at the same time. This information will help the function
      avoid exceeding the bounds of the array. In the replace function shown below, the string’s
      address is passed along with a replacement character and the buffer’s
      size. The function’s purpose is to replace all of the characters in the
      string up to the NUL character with
      the replacement character. The size argument prevents the function from
      writing past the end of the buffer:
void replace(char buffer[], char replacement, size_t size) {
    size_t count = 0;
    while(*buffer != NUL && count++<size) {
        *buffer = replacement;
        buffer++;
    }
}
In the following sequence, the name array can only hold up to seven
      characters plus the NUL termination
      character. However, we purposely write past the end of the array to
      demonstrate the replace function. In
      the following sequence, the replace
      function is passed to the name and a replacement character of
      +:
    char name[8];
    strcpy(name,"Alexander");
    replace(name,'+',sizeof(name));
    printf("%s\n", name);
When this code is executed, we get the following output:
 ++++++++r
Only eight plus-sign characters were added to the array. While the
      strcpy function permitted buffer
      overflow, the replace function did
      not. This assumes that the size passed is valid. Functions like strcpy that do not pass the buffer’s size
      should be used with caution. Passing the buffer’s size provides an
      additional layer of protection.

Misusing the sizeof Operator



An example of misusing the sizeof operator occurs when we attempt to
      check our pointer bounds but do it incorrectly. In the following
      example, we allocate memory for an integer array and then initialize
      each element to 0.
    int buffer[20];
    int *pbuffer = buffer;
    for(int i=0; i<sizeof(buffer); i++) {
        *(pbuffer++) = 0;
    }
However, the sizeof(buffer)
      expression returns 80 since the size of the buffer in bytes is 80 (20
      multiplied by 4 byte elements). The for loop is
      executed 80 times instead of 20 and will frequently result in a memory
      access exception terminating the application. Avoid this by using the
      expression sizeof(buffer)/sizeof(int)
      in the test condition of the for statement.

Always Match Pointer Types



It is a good idea to always use the appropriate pointer type
      for the data. To demonstrate one possible pitfall, consider the
      following sequence. A pointer to an integer is assigned to a pointer to
      a short:
   int  num = 2147483647;
   int *pi = &num;
   short *ps = (short*)pi;
   printf("pi: %p  Value(16): %x  Value(10): %d\n", pi, *pi, *pi);
   printf("ps: %p  Value(16): %hx  Value(10): %hd\n",
           ps, (unsigned short)*ps, (unsigned short)*ps);
The output of the snippet follows:
pi: 100  Value(16): 7fffffff  Value(10): 2147483647
ps: 100  Value(16): ffff  Value(10): -1
Notice that it appears that the first hexadecimal digit stored at
      address 100 is 7 or f,
      depending on whether it is displayed as an integer or as a
      short. This apparent contradiction
      is an artifact of executing this sequence on a little endian machine.
      The layout of memory for the constant at address 100 is illustrated in
      Figure 7-3.
[image: Mismatched pointer types]

Figure 7-3. Mismatched pointer types

If we treat this as a short number and only use the first two
      bytes, then we get the short value of –1. If we treat this as an integer
      and use all four bytes, then we get 2,147,483,647. These types of subtle
      problems are what make C and pointers such a challenging subject.

Bounded Pointers



The term bounded pointers describes
      pointers whose use is restricted to only valid regions. For example,
      with an array declared with 32 elements, a pointer used with this array
      would be restricted from accessing any memory before or after the
      array.
C does not provide any direct support for this approach. However,
      it can be enforced explicitly by the programmer, as shown below:
    #define SIZE 32

    char name[SIZE];
    char *p = name;
    if(name != NULL) {
        if(p >= name && p < name+SIZE) {
            // Valid pointer - continue
        } else {
            // Invalid pointer - error condition
        }
    }
This approach can get tedious. Instead, static analysis as
      discussed in the section Using Static Analysis Tools can be helpful.
An interesting variation is to create a pointer validation function. For this
      to happen, the initial location and range must be known.
Another approach is to use the Bounded Model Checking for
      ANSI-C and C++ (CBMC). This application checks for various safety and
      security issues within C programs and finds array bounds and buffer
      overflow problems.
Note
Smart pointers, available in C++, provide a way of simulating
        a pointer and support bounds checking. Unfortunately, they are not
        available in C.


String Security Issues



Security issues related to a string generally occur when we write
      past the end of a string. In this section, we will focus on the
      “standard” functions that contribute to this problem.
The use of string functions such as strcpy and strcat can result in buffer overflow if they
      are not used carefully. Several approaches have been suggested to
      replace these methods, but none have become widely accepted.
      The strncpy and strncat functions can provide some support for
      this operation where a size_t
      parameter specifies the maximum number of characters to copy. However,
      they can also be error prone if the number of characters is not
      calculated correctly.
In C11 (Annex K), the strcat_s and strcpy_s functions have been added. They
      return an error if buffer overflow occurs. Currently, they are only
      supported by Microsoft Visual C++. The following example illustrates the
      use of the strcpy_s function. It
      takes three parameters: a destination buffer, the size of the
      destination buffer, and a source buffer. If the return value is zero,
      then no errors occurred. However, in this example, an error will result
      since the source is too large to fit into the destination buffer:
char firstName [8];
int result;
result = strcpy_s(firstName,sizeof(firstName),"Alexander");
The scanf_s and wscanf_s functions are also available to
      protect against buffer overflow.
The gets function reads a
      string from standard input and stores the character in a designated
      buffer. It can write past the buffer’s declared length. If the string is
      too long, then buffer overflow will occur.
Also, the strlcpy and
      srtlcat functions are supported on
      some Linux systems but not by GNU C library. They are thought by some to
      create more problems than they solve and are not well documented.
The use of some functions can result in an attacker accessing
      memory using a technique known as format string
      attacks. In these attacks, a user-supplied format string,
      illustrated below, is crafted to enable access to memory and potentially
      the ability to inject code. In this simple program, the second command
      line argument is used as the first parameter of the printf function:
int main(int argc, char** argv) {
    printf(argv[1]);
    ...
}
This program can be executed using a command similar to the
      following:
main.exe "User Supplied Input"
Its output will appear as:
User Supplied Input
Although this program is innocuous, a more sophisticated attack
      can do real damage. Comprehensive coverage of this topic is not provided
      here; however, more detail on how to effect such an attack can be found
      at hackerproof.org.
Functions such as printf,
      fprintf, snprintf, and syslog all have a format string as an
      argument. The simplest defense against this type of attack is to never
      use a user-supplied format string with these functions.

Pointer Arithmetic and Structures



Pointer arithmetic should only be used with arrays. Because
      arrays are guaranteed to be allocated in a contiguous block of memory,
      pointer arithmetic will result in a valid offset. However, they should
      not be used within structures, as the structure’s fields may not be
      allocated in consecutive regions of memory.
This is illustrated with the following structure. The name field is allocated 10 bytes, and is
      followed by an integer. However, since the integer will be aligned on a
      four-byte boundary, there will be a gap between the two fields. Gaps of
      this type are explained in the sectionHow Memory Is Allocated for a Structure.
typedef struct _employee {
    char name[10];
    int age;
} Employee;
The following sequence attempts to use a pointer to access the
      age field of the structure:
    Employee employee;
    // Initialize eployee
    char *ptr = employee.name;
    ptr += sizeof(employee.name);
The pointer will contain the address 110, which is the address of
      the two bytes found between the two fields. Dereferencing the pointer
      will interpret the four bytes at address 110 as an integer. This is
      illustrated in Figure 7-4.
[image: Structure padding example]

Figure 7-4. Structure padding example

Warning
Improperly aligned pointers can result in an abnormal program
        termination or retrieval of bad data. In addition, slower pointer
        access is possible if the compiler is required to generate additional
        machine code to compensate for the improper alignment.

Even if the memory within a structure is contiguous, it is not a
      good practice to use pointer arithmetic with the structure’s fields. The
      following structure defines an Item
      consisting of three integers. While the three integer fields will
      normally be allocated in consecutive memory locations, there is no
      guarantee that they will be:
typedef struct _item {
    int partNumber;
    int quantity;
    int binNumber;
}Item;
The following code sequence declares a part and then uses pointer
      arithmetic to access each field:
    Item part = {12345, 35, 107};
    int *pi = &part.partNumber;
    printf("Part number: %d\n",*pi);
    pi++;
    printf("Quantity: %d\n",*pi);
    pi++;
    printf("Bin number: %d\n",*pi);
Normally, the output will be as expected, but it is not guaranteed
      to work. A better approach is to assign each field to pi:
    int *pi = &part.partNumber;
    printf("Part number: %d\n",*pi);
    pi = &part.quantity;
    printf("Quantity: %d\n",*pi);
    pi = &part.binNumber;
    printf("Bin number: %d\n",*pi);
Even better, do not use pointers at all, as shown below:
    printf("Part number: %d\n",part.partNumber);
    printf("Quantity: %d\n",part.quantity);
    printf("Bin number: %d\n",part.binNumber);

Function Pointer Issues



Functions and function pointers are used to control a program’s
      execution sequence, but they can be misused, resulting in unpredictable
      behavior. Consider the use of the function getSystemStatus. This function returns an
      integer value that reflects the system’s status:
int getSystemStatus() { 
    int status;
    ...
    return status; 
}
The best way to determine whether the system status is zero
      follows:
    if(getSystemStatus() == 0) {
        printf("Status is 0\n");
    } else {
         printf("Status is not 0\n");
    }
In the next example, we forget to use the open and close
      parentheses. The code will not execute properly:
    if(getSystemStatus == 0) {
        printf("Status is 0\n");
    } else {
        printf("Status is not 0\n");
    }
The else clause will always be executed. In the
      logical expression, we compared the address of the function with 0
      instead of calling the function and comparing its return value to 0.
      Remember, when a function name is used by itself, it returns the address
      of the function.
A similar mistake is using a function return value directly
      without comparing its result to some other value. The address is simply
      returned and evaluated as true or false. The address of the function is
      not likely to be zero. As a result, the address returned will be
      evaluated as true since C treats any nonzero value as true:
    if(getSystemStatus) {
        // Will always be true
    }
We should have written the function call as follows to determine
      whether the status is zero.
    if(getSystemStatus()) {
Do not assign a function to a function pointer when their
      signatures differ. This can result in undefined behavior. An example of
      this misuse is shown below:
    int (*fptrCompute)(int,int);
    int add(int n1, int n2, int n3) { 
        return n1+n2+n3;
    }

    fptrCompute = add;
    fptrCompute(2,5);
We attempted to invoke the add
      function with only two arguments when it expected three arguments. This
      will compile, but the output is indeterminate.
A function pointer executes different functions, depending on the
      address assigned to it. For example, we may want to use the printf function for normal operations but
      change it to a different function for specialized logging purposes.
      Declaring and using such a function pointer is shown below:
     int (*fptrIndirect)(const char *, ...) = printf;
     fptrIndirect("Executing printf indirectly");
It may be possible for an attacker to use buffer overflow to
      overwrite the function pointer’s address. When this happens, control can
      be transferred to an arbitrary location in memory.


Memory Deallocation Issues



Even when memory has been deallocated, we are not necessarily
    through with the pointer or the deallocated memory. One concern deals with
    what happens when we try to free the same memory twice. In addition, once
    memory is freed, we may need to be concerned with protecting any residual
    data. We will examine these issues in this section.
Double Free



Freeing a block of memory twice is referred to as double free, as
      explained in Double Free. The following illustrates
      how this can be done:
    char *name = (char*)malloc(...);
    ...
    free(name);     // First free
    ...
    free(name);     // Double free
In an earlier version of the zlib compression library, it
      was possible for a double-free operation to result in a denial of
      service attack or possibly to insert code into the program. However,
      this is extremely unlikely and the vulnerability has been addressed in
      newer releases of the library. More information about this vulnerability
      can be found at cert.org.
A simple technique to avoid this type of vulnerability is to
      always assign NULL to a pointer after it has been freed. Subsequent
      attempts to free a null pointer will be ignored by most heap
      managers.
    char *name = (char*)malloc(...);
    ...
    free(name); 
    name = NULL;
In the section Writing your own free function, we developed a function
      to achieve this effect.

Clearing Sensitive Data



It is a good idea to overwrite sensitive data in memory once
      it is no longer needed. When your application terminates, most operating
      systems do not zero out or otherwise manipulate the memory used by your
      application. Your old space may be allocated to another program, which
      will have access to its contents. Overwriting sensitive data will make
      it more difficult for another program to extract useful information from
      program address space previously used to hold sensitive data. The
      following sequence illustrates zeroing out of sensitive data in a
      program:
    char name[32];
    int userID;
    char *securityQuestion;
    
    // assign values
    ...
    
    // Delete sensitive information
    memset(name,0,sizeof(name));
    userID = 0;
    memset(securityQuestion,0,strlen(securityQuestion));
If name has been declared as a pointer, then we
      should clear its memory before we deallocate it, as shown below:
    char *name = (char*)malloc(...);
    ...
    memset(name,0,sizeof(name));
    free(name);


Using Static Analysis Tools



Numerous static analysis tools are available to detect improper use
    of pointers. In addition, most compilers possess options to detect many of
    the issues addressed in this chapter. For example, the GCC compiler’s -Wall
    option enables the reporting of all compiler warnings.
The following illustrates the warnings produced by some of the
    examples included in this chapter. Here we forget to use open and close
    parentheses for a function call:
    if(getSystemStatus == 0) {
The result is the following warning:
warning: the address of 'getSystemStatus' will never be NULL
We make essentially the same mistake here:
    if(getSystemStatus) {
However, the warning is different:
warning: the address of 'getSystemStatus' will always evaluate as 'true'
Using incompatible pointer types will result in a warning:
int (*fptrCompute)(int,int);
int addNumbers(int n1, int n2, int n3) { 
    return n1+n2+n3;
}

    ...
    fptrCompute = addNumbers;
The warning follows:
warning: assignment from incompatible pointer type
Failure to initialize a pointer is usually a problem:
    char *securityQuestion;
    strcpy(securityQuestion,"Name of your home town");
The warning generated is surprisingly lucid:
warning: 'securityQuestion' is used uninitialized in this function
Numerous static analysis tools are also available. Some are free,
    and others are available for a fee. They generally provide enhanced
    diagnostic capabilities beyond those provided by most compilers. Because
    of their complex nature, examples are beyond the scope of this book.

Summary



In this chapter, we investigated how pointers can affect an
    application’s security and reliability. These issues were organized around
    the declaration and initialization of pointers, the use of pointers, and
    memory deallocation problems. For example, it is important to initialize a
    pointer before it is used and to potentially clean up the memory used by a
    string once the memory is no longer needed. Setting a pointer to NULL can be an effective technique in many of
    these situations.
Pointers can be misused in several ways. Many of these involve
    overwriting memory outside the string, a form of buffer overflow. The
    misuse of pointers can cause undefined behavior in several areas,
    including mismatching pointer types and incorrect pointer
    arithmetic.
We illustrated various techniques to avoid these types of problems.
    Many involved simply understanding how pointers and strings are supposed
    to be used. We also touch on how compilers and static analysis tools can
    be used to identify potential problem areas.

Chapter 8. Odds and Ends



Pointers are vital to almost all aspects of C. Many of these areas are
  fairly well defined, such as arrays and functions. This chapter examines
  several topics that do not neatly fit into the previous chapters. Coverage
  of these topics will round out your knowledge of how pointers work.
In this chapter, we will examine several topics related to
  pointers:
	Casting pointers

	Accessing hardware devices

	Aliasing and strict aliasing

	Use of the restrict
      keyword

	Threads

	Object-oriented techniques



With regards to threads, there are two areas of interest. The
  first deals with the basic problem of sharing data between threads using
  pointers. The second discusses how pointers are used to support callbacks.
  An operation may invoke a function to perform a task. When the actual
  function called changes, this is referred to as a callback function. For
  example, the sort function used in Chapter 5 is an example of a callback function.
  A callback is also used to communicate between threads.
We will cover two approaches for providing object-oriented type
  support within C. The first is the use of an opaque pointer. This technique
  hides a data structure’s implementation details from users. The second
  technique will demonstrate how to effect polymorphic type behavior in
  C.
Casting Pointers



Casting is a basic operator that can be quite useful when used with
    pointers. Casting pointers are useful for a number of reasons,
    including:
	Accessing a special purpose address

	Assigning an address to represent a port

	Determining a machine’s endianness



We will also address a topic closely related to casting in the
    sectionUsing a Union to Represent a Value in Multiple Ways.
Note
The endianness of a machine generally refers to the order of
      bytes within a data type. Two common types of endian include little
      endian and big endian. Little endian means the low-order bytes are
      stored in the lowest address, while big endian means the high-order
      bytes are stored at the lowest address.

We can cast an integer to a pointer to an integer as shown
    below:
   int num = 8;
   int *pi = (int*)num;
However, this is normally a poor practice as it allows access to an
    arbitrary address, potentially a location the program is not permitted to
    access. This is illustrated in Figure 8-1, where address 8 is not
    in the application’s address space. If the pointer is dereferenced, it
    will normally result in the application’s termination.
[image: Casting an integer to a bad location]

Figure 8-1. Casting an integer to a bad location

For some situations, such as when we need to address memory location
    zero, we may need to cast a pointer to an integer and then cast it back to
    a pointer. This is more common on older systems where a pointer’s size is
    the same size as an integer. However, this does not always work. The
    approach is illustrated below, where the output is
    implementation-dependent:
   pi = &num;
   printf("Before: %p\n",pi);
   int tmp = (int)pi;
   pi = (int*)tmp;
   printf("After: %p\n",pi);
Casting a pointer to an integer and then back to a pointer has never
    been considered good practice. If this needs to be done, consider using a
    union, as discussed in the sectionUsing a Union to Represent a Value in Multiple Ways.
Remember that casting to and from an integer is different from
    casting to and from void, as illustrated in Pointer to void.
Note
The term handle is sometimes confused
      with a pointer. A handle is a reference to a system resource. Access to
      the resource is provided through the handle. However, the handle
      generally does not provide direct access to the resource. In contrast, a
      pointer contains the resource’s address.

Accessing a Special Purpose Address



The need to access a special purpose address often occurs on
      embedded systems where there is minimal operating system mediation. For
      example, in some low-level OS kernels the address of video RAM for a PC
      is 0xB8000. This address holds the character to be displayed in the
      first row and first column when in text mode. We can assign this address
      to a pointer and then assign a character to the location, as illustrated
      below. The memory layout is shown in Figure 8-2:
   #define VIDEO_BASE 0xB8000
   int *video = (int *) VIDEO_BASE;
   *video = 'A';
If appropriate, the address can also be read. This is not
      typically done for video memory.
[image: Addressing video memory on a PC]

Figure 8-2. Addressing video memory on a PC

When you need to address memory at location zero, sometimes the
      compiler will treat it as a NULL
      pointer value. Access to location zero is often needed in low-level
      kernel programs. Here are a few techniques to address this
      situation:
	Set the pointer to zero (this does not always work)

	Assign a zero to an integer and then cast the integer to the
          pointer

	Use a union as discussed in the section Using a Union to Represent a Value in Multiple Ways

	Use the memset
          function to assign a zero to the pointer



An example of using the memset
      function follows. Here, the memory referenced by ptr is set to all zeros:
memset((void*)&ptr, 0, sizeof(ptr));
On systems where addressing memory location zero is needed, the
      vendor will frequently have a workaround.

Accessing a Port



A port is both a hardware and a software concept. Servers
      use software ports to indicate they should receive certain messages sent
      to the machine. A hardware port is typically a physical input/output
      system component connected to an external device. By either reading or
      writing to a hardware port, information and commands can be processed by
      the program.
Typically, software that accesses a port is part of the OS. The
      following illustrates the use of pointers to access a port:
   #define PORT 0xB0000000
   unsigned int volatile * const port = (unsigned int *) PORT;
The machine uses the hexadecimal value address to designate a
      port. The data is treated as an unsigned integer. The volatile keyword
      qualifier indicates that the variable can be changed outside of the
      program. For example, an external device may write data to a port. This
      write operation is performed independent of the computer’s processor.
      Compilers will sometimes temporarily use a cache, or register, to hold
      the value in a memory location for optimization purposes. If the
      external write modifies the memory location, then this change will not
      be reflected in the cached or register value.
Using the volatile keyword will prevent the runtime system from
      using a register to temporarily store the port value. Each port access
      requires the system to read or write to the port instead of reading a
      possibly stale value stored in a register. We don’t want to declare all
      variables as volatile, as this will prevent the compiler from performing
      certain types of optimizations.
The application can then read or write to the port by
      dereferencing the port pointer as follows. The layout of memory is shown
      in Figure 8-3, where the External Device
      can read/write to the memory at 0xB0000000:
   *port = 0x0BF4; // write to the port
   value = *port; // read from the port
[image: Accessing a port]

Figure 8-3. Accessing a port

Warning
It is not a good idea to access volatile memory with a
        nonvolatile variable. Using such a variable can result in undefined
        behavior.


Accessing Memory using DMA



Direct Memory Access (DMA) is a low-level operation that assists in transferring data
      between main memory and some device. It is not part of the ANSI C
      specification but operating systems typically provide support for this
      operation. DMA operations are normally conducted in parallel with the
      CPU. This frees up the CPU for other processing and can result in better
      performance.
The programmer will invoke a DMA function and then wait for
      the operation’s completion. Often, a callback function is provided by
      the programmer. When the operation completes, the callback function is
      invoked by the operating system. The callback function is specified
      using a function pointer and is discussed further in the section Using Function Pointers to Support Callbacks.

Determining the Endianness of a Machine



The cast operator can also be used to determine the
      endianness of architecture. Endian refers to the
      order of bytes in a unit of memory. The endianness is usually referred
      to as either little endian or big
      endian. For example, for a four-byte representation of an
      integer using little endian ordering, the integer’s least significant
      byte is stored in the lowest address of the four bytes.
In the following example, we cast an integer’s address as a
      pointer to a char. The individual
      bytes are then displayed:
    int num = 0x12345678;
    char* pc = (char*) &num;
    for (int i = 0; i < 4; i++) {
        printf("%p: %02x \n", pc, (unsigned char) *pc++);
    }
The output of this code snippet as executed on an Intel PC
      reflects a little-endian architecture, as shown below. Figure 8-4 illustrates how these values are
      allocated in memory:
100: 78 
101: 56 
102: 34 
103: 12
[image: Endian example]

Figure 8-4. Endian example



Aliasing, Strict Aliasing, and the restrict Keyword



One pointer is said to alias another pointer if they both
    reference the same memory location. This is not uncommon, and it can
    present a number of problems. In the following code sequence, two pointers
    are declared and are both assigned the same address:
    int num = 5;
    int* p1 = &num;
    int* p2 = &num;
When the compiler generates code for pointers, it has to assume that
    aliasing may occur unless told otherwise. The use of aliasing imposes
    restrictions on compiler-generated code. If two pointers reference the
    same location, either can potentially modify that location. When the
    compiler generates code to read or write to that location, it is not
    always able to optimize the code by storing the value in a register. It is
    forced to perform machine-level load and store operations with each
    reference. The repeated load/store sequence can be inefficient. In some
    situations, the compiler must also be concerned about the order in which
    the operations are performed.
Strict aliasing is another form of aliasing. Strict aliasing does not allow
    a pointer of one data type to alias a pointer of a different data type. In
    the following code sequence, a pointer to an integer aliases a pointer to
    a float. This violates the strict aliasing rule. The sequence determines
    whether the number is negative. Instead of comparing its argument to zero
    to see whether it is positive, this approach will execute faster:
    float number = 3.25f;
    unsigned int *ptrValue = (unsigned int *)&number;
    unsigned int result = (*ptrValue & 0x80000000) == 0;
Note
Strict aliasing does not apply to pointers differing only by sign
      or qualifier. The following are all valid strict aliases:
    int num;
    const int *ptr1 = &num;
    int *ptr2 = &num;
    int volatile ptr3 = &num;

However, there are situations where the ability to use multiple
    representations of the same data can be useful. To avoid aliasing
    problems, several techniques are available:
	Use a union

	Disable strict aliasing

	Use a pointer to char



A union of two data types can get around the strict aliasing
    problem. This is discussed in the section Using a Union to Represent a Value in Multiple Ways. If your
    compiler has an option to disable strict aliasing, it can be turned off.
    The GCC compiler has the following compiler options:
	-fno-strict-aliasing to turn
        it off

	-fstrict-aliasing to turn it
        on

	-Wstrict-aliasing to warn of
        strict aliasing-related problems



Code requiring strict aliasing to be turned off probably reflects
    poor memory access practices. When possible, take time to resolve these
    issues instead of turning off strict aliasing.
Note
Compilers do not always do a good job at reporting alias-related
      warnings. They can sometimes miss aliases and may sometimes report alias
      problems where they don’t exist. It is ultimately up to the programmer
      to identify alias conditions.

A pointer to char is always
    assumed to potentially alias any object. Thus, it can be used safely in
    most situations. However, casting a pointer to one data type to a pointer
    to char and then casting the pointer to
    char to a second pointer data type will
    result in undefined behavior and should be avoided.
Using a Union to Represent a Value in Multiple Ways



C is a typed language. When a variable is declared, a type
      is assigned to it. Multiple variables can exist with different types. At
      times, it may be desirable to convert one type to another type. This is
      normally achieved with casting but can also be performed using a union.
      The term type punning describes the
      technique used to subvert the type system.
When the conversion involves pointers, serious problems can
      result. To illustrate this technique, we will use three different
      functions. These will determine whether a floating point number is
      positive.
The first function shown below uses a union of a float and an
      unsigned integer. The function first assigns the floating point value to
      the union and then extracts the integer to perform the test:
typedef union _conversion {
    float fNum;
    unsigned int uiNum;
} Conversion;

int isPositive1(float number) {
    Conversion conversion = { .fNum =number};
    return (conversion.uiNum & 0x80000000) == 0;
}
This will work correctly and does not involve aliasing because no
      pointers are involved. The next version uses a union that contains
      pointers to the two data types. The floating point number’s address is
      assigned to the first pointer. The integer’s pointer is then
      dereferenced to perform the test. This violates the strict aliasing
      rule:
typedef union _conversion2 {
    float *fNum;
    unsigned int *uiNum;
} Conversion2;

int isPositive2(float number) {
    Conversion2 conversion;
    conversion.fNum =&number;
    return (*conversion.uiNum & 0x80000000) == 0;
}
The following function does not use a union and violates the
      strict aliasing rule since the ptrValue pointer shares the same address as
      number:
int isPositive3(float number) {
    unsigned int *ptrValue = (unsigned int *)&number;
    return (*ptrValue & 0x80000000) == 0;
}
The approach used by these functions assumes:
	The IEEE-754 floating point standard is used to represent a
          floating point number

	The floating number is laid out in a particular manner

	Integer and floating point pointers are aligned
          correctly



However, these assumptions are not always valid. While approaches
      such as this can optimize operations, they are not always portable. When
      portability is important, performing a floating point comparison is a
      better approach.

Strict Aliasing



A compiler does not enforce strict aliasing. It will only
      generate warnings. The compiler assumes that two or more pointers of
      different types will never reference the same object. This includes
      pointers to structures with different names but that are otherwise
      identical. With strict aliasing, the compiler is able to perform certain
      optimizations. If the assumption is incorrect, then unexpected results
      may occur.
Even if two structures have the same field but different names,
      two pointers to these structures should never reference the same object.
      In the following example, it is assumed the person and employee pointers will never reference the
      same object:
typedef struct _person {
    char* firstName;
    char* lastName;
    unsigned int age;
} Person;

typedef struct _employee {
    char* firstName;
    char* lastName;
    unsigned int age;
} Employee;

Person* person;
Employee* employee;
However, the pointers can reference the same object if the
      structure definitions differ only by their name, as illustrated
      below:
typedef struct _person {
    char* firstName;
    char* lastName;
    unsigned int age;
} Person;

typedef Person Employee;

Person* person;
Employee* employee;

Using the restrict Keyword



C compilers assume pointers are aliased by default. Using
      the restrict keyword when declaring a
      pointer tells the compiler that the pointer is not aliased. This allows
      the compiler to generate more efficient code. Frequently, this is
      achieved by caching the pointer. Bear in mind that this is only a
      recommendation. The compiler may decide not to optimize the code. If
      aliases are used, then the code’s execution will result in undefined
      behavior. The compiler will not provide any warning when the assumption
      is violated.
Note
New code development should use the restrict keyword with most pointer
        declarations. This will enable better code optimization. Modifying
        existing code may not be worth the effort.

The following function illustrates the definition and use of the
      restrict keyword. The function adds
      two vectors together and stores the result in the first vector:
void add(int size, double * restrict arr1, const double * restrict arr2) {
    for (int i = 0; i < size; i++) {
        arr1[i] += arr2[i];
    }
}
The restrict keyword is used
      with both array parameters, but they should not both reference the same
      block of memory. The following shows the correct usage of the
      function:
    double vector1[] = {1.1, 2.2, 3.3, 4.4};
    double vector2[] = {1.1, 2.2, 3.3, 4.4};
    
    add(4,vector1,vector2);
In the following sequence, the function is called improperly with
      the same vector being passed as both parameters. The first statement
      uses an alias while the second statement uses the same vector
      twice:
    double vector1[] = {1.1, 2.2, 3.3, 4.4};
    double *vector3 = vector1;

    add(4,vector1,vector3);
    add(4,vector1,vector1);
Though it may sometimes work correctly, the results of the
      function invocation may not be reliable.
Several standard C functions use the restrict keyword, including:
	void *memcpy(void * restrict s1,
          const void * restrict s2, size_t n);

	char *strcpy(char * restrict s1,
          const char * restrict s2);

	char *strncpy(char * restrict s1,
          const char * restrict s2, size_t n);

	int printf(const char * restrict
          format, ... );

	int sprintf(char * restrict s, const
          char * restrict format, ... );

	int snprintf(char * restrict s,
          size_t n, const char * restrict format, ... );

	int scanf(const char * restrict
          format, ...);



The restrict keyword has two
      implications:
	To the compiler it means it can perform certain code
          optimizations

	To the programmer it means these pointers should not be
          aliased; otherwise, the results of the operation are undefined.





Threads and Pointers



When threads share data, numerous problems can occur. One common
    problem is the corruption of data. One thread may write to an object but
    the thread may be suspended momentarily, leaving that object in an
    inconsistent state. Subsequently, a second thread may read that object
    before the first thread is able to resume. The second thread is now using
    an invalid or corrupted object.
Since pointers are a common way of referencing data in another
    thread, we will examine various issues that can adversely affect a
    multithreaded application. As we will see in this section’s examples,
    mutexes are frequently used to protect data.
The C11 standard implements threading, but it is not widely
    supported at this time. There are numerous libraries that support threads
    in C. We will use Portable Operating System
    Interface (POSIX) threads since they are readily available.
    Regardless of the library used, the techniques presented here should be
    applicable.
We will use pointers to support a multithreaded application and
    callbacks. Threads are an involved topic. We assume you are familiar with
    basic thread concepts and terms, and therefore, we will not go into detail
    about how the POSIX thread functions work. The reader is referred to
    O’Reilly’s PThreads Programming
    for a more detailed discussion of this topic.
Sharing Pointers Between Threads



When two or more threads share data, the data can become
      corrupted. To illustrate this problem, we will implement a
      multi-threaded function that computes the dot product of two vectors.
      The multiple threads will simultaneously access two vectors and a sum
      field. When the threads complete, the sum field will hold the dot
      product value.
The dot product of two vectors is computed by summing the product
      of the corresponding elements of each vector. We will use two data
      structures in support of the operation. The first one, VectorInfo, contains information about the two
      vectors being manipulated. It has pointers to the two vectors, the
      sum field to hold the dot product,
      and a length field to specify the
      vector segment’s size used by the dot product function. The length field represents that portion of the
      vector that a thread will process, not the entire length of a
      vector:
typedef struct {
    double *vectorA;
    double *vectorB;
    double sum;
    int length;
} VectorInfo;
The second data structure, Product, contains a pointer to a VectorInfo instance and the beginning index
      the dot Product vector will use. We
      will create a new instance of this structure for each thread with a
      different beginning index:
typedef struct {
    VectorInfo *info;
    int beginningIndex;
} Product;
While each thread will be acting on both vectors at the same time,
      they will be accessing different parts of the vector, so there is no
      conflict there. Each thread will compute a sum for its section of the
      vectors. However, this sum will need to be added to the sum field of the VectorInfo structure. Since multiple threads
      may be accessing the sum field at the
      same time, it is necessary to protect this data using a
      mutex as declared below. A mutex allows only one
      thread to access a protected variable at a time. The following declares
      a mutex to protect the sum variable.
      It is declared at a global level to allow multiple threads to access
      it:
pthread_mutex_t mutexSum;
The dotProduct function is
      shown below. When a thread is created, this function will be called.
      Since we are using POSIX, it is necessary to declare this function as
      returning void and being passed a pointer to void. This pointer passes
      information to the function. We will pass an instance of the Product structure.
Within the function, variables are declared to hold the beginning
      and ending indexes. The for loop performs the actual multiplication and
      keeps a cumulative total in the total
      variable. The last part of the function locks the mutex, adds total to sum, and then unlocks the mutex. While the
      mutext is locked, no other threads can access the sum variable:
void dotProduct(void *prod) {
    Product *product = (Product*)prod;
    VectorInfo *vectorInfo = Product->info;
    int beginningIndex = Product->beginningIndex;
    int endingIndex = beginningIndex + vectorInfo->length;
    double total = 0;

    for (int i = beginningIndex; i < endingIndex; i++) {
        total += (vectorInfo->vectorA[i] * vectorInfo->vectorB[i]);
    }

    pthread_mutex_lock(&mutexSum);
    vectorInfo->sum += total;
    pthread_mutex_unlock(&mutexSum);

    pthread_exit((void*) 0);
}
The code to create the threads is shown below. Two simple vectors
      are declared along with an instance of VectorInfo. Each vector holds 16 elements. The
      length field is set to 4:
#define NUM_THREADS  4

void threadExample() {
    VectorInfo vectorInfo;
    double vectorA[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,
        9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0};
    double vectorB[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,
        9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0};

    double sum;

    vectorInfo.vectorA = vectorA;
    vectorInfo.vectorB = vectorB;
    vectorInfo.length = 4;
A four-element array of threads is created next, along with code
      to initialize the mutex and an attribute field for the thread:
    pthread_t threads[NUM_THREADS];

    void *status;
    pthread_attr_t attr;

    pthread_mutex_init(&mutexSum, NULL);
    pthread_attr_init(&attr);
    pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

    int returnValue;
    int threadNumber;
With each for loop iteration, a new instance of the Product structure is created. It is assigned
      the address of vectorInfo and a
      unique index based on threadNumber.
      The threads are then created:
    for (threadNumber = 0; threadNumber < NUM_THREADS; threadNumber++) {
        Product *product = (Product*) malloc(sizeof(Product));
        product->beginningIndex = threadNumber * 4;
        product->info = &vectorInfo;
        returnValue = pthread_create(&threads[threadNumber], &attr, 
                            dotProduct, (void *) (void*) (product));
        if (returnValue) {
            printf("ERROR; Unable to create thread: %d\n", returnValue);
            exit(-1);
        }
    }
After the for loop, the thread attribute and
      mutex variables are destroyed. The for loop ensures
      the program will wait until all four threads have completed. The dot
      product is then displayed. For the above vectors, the product is
      1496:
    pthread_attr_destroy(&attr);

    for (int i = 0; i < NUM_THREADS; i++) {
        pthread_join(threads[i], &status);
    }

    pthread_mutex_destroy(&mutexSum);
    printf("Dot Product sum: %lf\n", vectorInfo.sum);
    pthread_exit(NULL); 

}
The sum field is thus
      protected.

Using Function Pointers to Support Callbacks



We previously used a callback function in the sort function
      developed in Chapter 5. Since the
      sort example does not use multiple threads, some programmers do not call
      this a callback function. A more widely accepted definition of a
      callback is when an event in one thread results in the invocation, or
      callback, of a function in another thread. One thread is passed a
      function pointer to a callback function. An event in the function can
      trigger a call to the callback function. This approach is useful in GUI
      applications to handle user thread events.
We will illustrate this approach using a function to compute the
      factorial of a number. The function will callback a second function when
      the factorial has been computed. Information regarding the factorial is
      encapsulated in a FactorialData structure and is passed
      between the functions. This structure and the factorial function are
      shown below. The data consists of the factorial number, the results, and
      a function pointer for the callback. The factorial function uses this data to compute
      the factorial, store the answer in the result field, call the callback function, and
      then terminate the thread:
typedef struct _factorialData {
    int number;
    int result;
    void (*callBack)(struct _factorialData*);
} FactorialData;

void factorial(void *args) {
    FactorialData *factorialData = (FactorialData*) args;
    void (*callBack)(FactorialData*); // Function prototype

    int number = factorialData->number;
    callBack = factorialData->callBack;

    int num = 1;
    for(int i = 1; i<=number; i++) {
        num *= i;
    }

    factorialData->result = num;
    callBack(factorialData);

    pthread_exit(NULL);
}
The thread is created in a startThread function as shown below. The
      thread executes the factorial
      function and passes it factorial data:
void startThread(FactorialData *data) {
    pthread_t thread_id;
    int thread =  pthread_create(&thread_id, NULL, factorial, (void *) data);
}
The callback function simply displays the factorial
      results:
void callBackFunction(FactorialData *factorialData) {
    printf("Factorial is %d\n", factorialData->result);
}
The factorial data is initialized and the startThread function is called as shown below.
      The Sleep function provides time for
      all of the threads to terminate properly:
    FactorialData *data =
        (FactorialData*) malloc(sizeof(FactorialData));

    if(!data) {
        printf("Failed to allocate memory\n");
        return;
    }

    data->number = 5;
    data->callBack = callBackFunction;

    startThread(data);

    Sleep(2000);
When this is executed, the output will be as follows:
Factorial is 120
Instead of sleeping, the program can perform other tasks. The
      program does not have to wait for the thread to complete.


Object-Oriented Techniques



C is not known for its support of object-oriented
    programming. However, you can use C to encapsulate data using an opaque
    pointer and to support a certain level of polymorphic behavior. By hiding
    a data structure’s implementation and its supporting functions, the user
    does not need to know how the structure is implemented. Hiding this
    information will reduce what the user needs to know and thus reduce the
    application’s complexity level. In addition, the user will not be tempted
    to take advantage of the structure’s internal details, potentially causing
    later problems if the data structure’s implementation changes.
Polymorphic behavior helps make an application more maintainable. A
    polymorphic function behavior depends on the object it is executing
    against. This means we can add functionality to an application more
    easily.
Creating and Using an Opaque Pointer



An opaque pointer can be used to effect data encapsulation in
      C. One approach declares a structure without any implementation details
      in a header file. Functions are then defined to work with a specific
      implementation of the data structure in an implementation file. A user
      of the data structure will see the declaration and the functions’
      prototypes. However, the implementation is hidden (in the
      .c/.obj file).
Only the information needed to use the data structure is made
      visible to the user. If too much internal information is made available,
      the user may incorporate this information and become dependent on it.
      Should the internal structure change, then it may break the user’s
      code.
We will develop a linked list to demonstrate an opaque pointer.
      The user will use one function to obtain a pointer to a linked list.
      This pointer can then be used to add and remove information from the
      linked list. The details of the linked list’s internal structure and its
      supporting function are not available to the user. The only aspects of
      this structure are provided through a header file, as shown
      below:
//link.h

typedef void *Data;
typedef struct _linkedList LinkedList;

LinkedList* getLinkedListInstance();
void removeLinkedListInstance(LinkedList* list);
void addNode(LinkedList*, Data);
Data removeNode(LinkedList*);
Data is declared as a pointer to void. This allows the
      implementation to handle any type of data. The type definition for
      LinkedList identifies a structure
      called _linkedList. The definition of
      this structure is hidden from the user in its implementation
      file.
Four methods are provided to permit the use of the linked list.
      The user will begin by obtaining a LinkedList’s instance using the getLinkedListInstance function. Once the
      linked list is no longer needed, the removeLinkedListInstance function should be
      called. Passing linked list pointers allows the functions to work with
      one or more linked lists.
To add data to the linked list, the addNode function is used. It is passed the
      linked list to use and a pointer to the data to add to the linked list.
      The removeNode method returns the
      data found at the head of the linked list.
The linked list’s implementation is found in a separate file
      called link.c. The first part of
      the implementation, as shown below, declares variables to hold the
      user’s data and to connect to the next node in the linked list. This is
      followed by the _linkedList
      structure’s definition. In this simple linked list, only a head pointer
      is used:
// link.c

#include <stdlib.h>
#include "link.h"

typedef struct _node {
      Data* data;
      struct _node* next;
} Node;

struct _linkedList {
    Node* head;
};
The second part of the implementation file contains
      implementations of the linked list’s four supporting functions. The
      first function returns an instance of the linked list:
LinkedList* getLinkedListInstance() {
    LinkedList* list = (LinkedList*)malloc(sizeof(LinkedList));
    list->head = NULL;
    return list;
}
The removeLinkedListInstance
      function’s implementation follows. It will free each node in the linked
      list, if any, and then free the list itself. This implementation can
      result in a memory leak if the data referenced by the node contains
      pointers. One solution is to pass a function to deallocate the members
      of the data:
void removeLinkedListInstance(LinkedList* list) {
    Node *tmp = list->head;
    while(tmp != NULL) {
        free(tmp->data);  // Potential memory leak!
        Node *current = tmp;
        tmp = tmp->next;
        free(current);
    }
    free(list);
}
The addNode function adds the
      data passed as the second parameter to the linked list specified by the
      first parameter. Memory is allocated for the node, and the user’s data
      is associated with the node. In this implementation, the linked list’s
      nodes are always added to its head:
void addNode(LinkedList* list, Data data) {
    Node *node = (Node*)malloc(sizeof(Node));
    node->data = data;
    if(list->head == NULL) {
        list->head = node;
        node->next = NULL;
    } else {
        node->next = list->head;
        list->head = node;
    }
}
The removeNode function returns
      the data associated with the first node in the linked list. The head
      pointer is adjusted to point to the next node in the linked list. The
      data is returned and the old head node is freed, releasing it back to
      the heap.
Note
This approach eliminates the need for the user to remember to
        free nodes of the linked list, thus avoiding a memory leak. This is a
        significant advantage of hiding implementation details:

Data removeNode(LinkedList* list) {
    if(list->head == NULL) {
        return NULL;
    } else {
        Node* tmp = list->head;
        Data* data;
        list->head = list->head->next;
        data = tmp->data;
        free(tmp);
        return data;
    }  
}
To demonstrate the use of this data structure, we will reuse the
      Person structure and its functions
      developed in Introduction. The following
      sequence will add two people to a linked list and then remove them.
      First, the getLinkedListInstance
      function is invoked to obtain a
      linked list. Next, instances of Person are created using the initializePerson function
      and then added to the linked list using the addNode function. The displayPerson function displays the persons
      returned by the removeNode functions.
      The linked list is then freed:
#include "link.h";
...
    LinkedList* list = getLinkedListInstance();
    
    Person *person = (Person*) malloc(sizeof(Person));
    initializePerson(person, "Peter", "Underwood", "Manager", 36);
    addNode(list, person);
    person = (Person*) malloc(sizeof(Person));
    initializePerson(person, "Sue", "Stevenson", "Developer", 28);
    addNode(list, person);

    person = removeNode(list);
    displayPerson(*person);

    person = removeNode(list);
    displayPerson(*person);
    
    removeLinkedListInstance(list);
There are a couple of interesting aspects of this approach. We had
      to create an instance of the _linkedList structure in the list.c file. It needs to be created there
      because the sizeof operator cannot be
      used without a complete structure declaration. For example, if we had
      tried to allocate memory for this structure in the main function, as
      follows, we would get a syntax error:
    LinkedList* list = (LinkedList*)malloc(sizeof(LinkedList));
The syntax error generated will be similar to the
      following:
error: invalid application of ‘sizeof’ to incomplete type ‘LinkedList’
The type is incomplete because the compiler has no insight into
      the actual definition as found in the list.c file. All it sees is the _linkedList structure’s type definition. It
      does not see the structure’s implementation details.
The user’s inability to see and potentially use the linked list’s
      internal structure is restricted. Any changes to the structure are
      hidden from the user.
Only the signatures of the four supporting functions are visible
      to the user. Otherwise, the user is unable to use knowledge of their
      implementation or to modify them. The linked list structure and its
      supporting functions are encapsulated, reducing the burden on
      the user.

Polymorphism in C



Polymorphism in an object-oriented language such as C++ is based on
      inheritance between a base and a derived class. Since C does not support
      inheritance we need to simulate inheritance between structures. We will
      define and use two structures to illustrate polymorphic behavior. A
      Shape structure will represent a base
      “class” and a Rectangle structure will be derived from
      the base Shape.
The structure’s variable allocation order has a large impact on
      how this technique works. When an instance of a derived class/structure
      is created, the base class/structure’s variables are allocated first,
      followed by the derived class/structure’s variables. As we will see, we
      also need to account for the functions we plan to override.
Note
Understanding how memory is allocated for objects instantiated
        from a class is key to understanding how inheritance and polymorphism
        work in an object-oriented language. The same is true when we use this
        technique in C.

Let’s start with the Shape
      structure’s definition as shown below. First, we allocate a structure to
      hold the function pointers for the structure. Next, integers are
      declared for an x and a y position:
typedef struct _shape {
    vFunctions functions;
    // Base variables
    int x;
    int y;
} Shape;
The vFunction structure and its
      supporting declarations are defined below. When a function is executed
      against a class/structure, its behavior will depend on what it is
      executing against. For example, when a display function is executed
      against a Shape, then a Shape should be displayed. When it is executed
      against a Rectangle, then a Rectangle should be displayed. In an
      object-oriented programming language this is typically achieved using a
      Virtual Table or VTable. The vFunction structure is intended to serve in
      this capacity:
typedef void (*fptrSet)(void*,int);
typedef int (*fptrGet)(void*);
typedef void (*fptrDisplay)();

typedef struct _functions {
    // Functions
    fptrSet setX;
    fptrGet getX;
    fptrSet setY;
    fptrGet getY;
    fptrDisplay display;    
} vFunctions;
This structure consists of a series of function pointers. The
      fptrSet and fptrGet function pointers define the typical
      getter and setter functions for integer type data. In this case, they
      are used for getting and setting the x and y
      values for a Shape or Rectangle. The fptrDisplay function pointer defines a
      function that is passed void and
      returns void. We will use the display
      function to illustrate polymorphic behavior.
The Shape structure has four
      functions designed to work with it, as shown below. Their
      implementations are straightforward. To keep this example simple, in the
      display function, we simply print out
      the string “Shape.” We pass the Shape
      instance to these functions as the first argument. This allows these
      functions to work with more than one instance of a Shape:
void shapeDisplay(Shape *shape) { printf("Shape\n");}
void shapeSetX(Shape *shape, int x) {shape->x = x;} 
void shapeSetY(Shape *shape, int y) {shape->y = y;}
int shapeGetX(Shape *shape) { return shape->x;}
int shapeGetY(Shape *shape) { return shape->y;}
To assist in the creation of a Shape instance, we have provided a getShapeInstance function. It allocates memory
      for the object and the object’s functions are assigned:
Shape* getShapeInstance() {
    Shape *shape = (Shape*)malloc(sizeof(Shape));
    shape->functions.display = shapeDisplay;
    shape->functions.setX = shapeSetX;
    shape->functions.getX = shapeGetX;
    shape->functions.setY = shapeSetY;
    shape->functions.getY = shapeGetY;
    shape->x = 100;
    shape->y = 100;
    return shape;
}
The following sequence demonstrates these functions:
    Shape *sptr = getShapeInstance();
    sptr->functions.setX(sptr,35);
    sptr->functions.display();
    printf("%d\n", sptr->functions.getX(sptr));
The output of this sequence is:
Shape
35
This may seem to be a lot of effort just to work with a Shape structure. We can see the real power of
      this approach once we create a structure derived from Shape: Rectangle. This structure is shown
      below:
typedef struct _rectangle {  
    Shape base;
    int width;
    int height;
} Rectangle;
The memory allocated for the Rectangle structure’s first field is the same
      as the memory allocated for a Shape
      structure. This is illustrated in Figure 8-5. In addition, we
      have added two new fields, width and
      height, to represent a rectangle’s
      characteristics.
[image: Memory allocation for shape and rectangle]

Figure 8-5. Memory allocation for shape and rectangle

Rectangle, like Shape, needs some functions associated with
      it. These are declared below. They are similar to those associated with
      the Shape structure, except that they
      use the Rectangle’s base
      field:
void rectangleSetX(Rectangle *rectangle, int x) {
    rectangle->base.x = x;
} 

void rectangleSetY(Rectangle *rectangle, int y) {
    rectangle->base.y;
}

int rectangleGetX(Rectangle *rectangle) { 
    return rectangle->base.x;
}

int rectangleGetY(Rectangle *rectangle) { 
    return rectangle->base.y;
}

void rectangleDisplay() { 
    printf("Rectangle\n");
}
The getRectangleInstance
      function returns an instance of a Rectangle structure as follows:
Rectangle* getRectangleInstance() {
    Rectangle *rectangle = (Rectangle*)malloc(sizeof(Rectangle));
    rectangle->base.functions.display = rectangleDisplay;
    rectangle->base.functions.setX = rectangleSetX;
    rectangle->base.functions.getX = rectangleGetX;
    rectangle->base.functions.setY = rectangleSetY;
    rectangle->base.functions.getY = rectangleGetY;
    rectangle->base.x = 200;
    rectangle->base.y = 200;
    rectangle->height = 300;
    rectangle->width = 500;
    return rectangle;
}
The following illustrates the use of this structure:
    Rectangle *rptr = getRectangleInstance();
    rptr->base.functions.setX(rptr,35);
    rptr->base.functions.display();
    printf("%d\n", rptr->base.functions.getX(rptr));
The output of this sequence is:
Rectangle
35
Now let’s create an array of Shape pointers and initialize them as follows.
      When we assign a Rectangle to
      shapes[1], we do not have to cast it
      as a (Shape*). However, we will get a
      warning if we don’t:
    Shape *shapes[3];
    shapes[0] = getShapeInstance();
    shapes[0]->functions.setX(shapes[0],35);
    shapes[1] = getRectangleInstance();
    shapes[1]->functions.setX(shapes[1],45);
    shapes[2] = getShapeInstance();
    shapes[2]->functions.setX(shapes[2],55);

    for(int i=0; i<3; i++) {
        shapes[i]->functions.display();
        printf("%d\n", shapes[i]->functions.getX(shapes[i]));        
    }
When this sequence is executed, we get the following
      output:
Shape
35
Rectangle
45
Shape
55
While we created an array of Shape pointers, we created a Rectangle and assigned it to the array’s
      second element. When we displayed the element in the for loop, it used
      the Rectangle’s function behavior and
      not the Shape’s. This is an example
      of polymorphic behavior. The display
      function depends on the structure it is executing against.
Since we are accessing it as a Shape, we should not try to access its width
      or height using shapes[i] since the
      element may or may not reference a Rectangle. If we did, then we could be
      accessing memory in other shapes that do not represent width or height
      information, yielding unpredictable results.
We can now add a second structure derived from Shape, such as a Circle, and then add it to the array without
      extensive modification of the code. We also need to create functions for
      the structure.
If we added another function to the base structure Shape, such as getArea, we could implement a unique getArea function for each class. Within a
      loop, we could easily add up the sum of all of the Shape and Shape-derived structures without having to
      first determine what type of Shape we
      are working with. If the Shape’s
      implementation of getArea is
      sufficient, then we do not need to add one for the other structures.This
      makes it easy to maintain and expand an application.


Summary



In this chapter, we have explored several aspects of pointers. We
    started with a discussion of casting pointers. Examples illustrated how to
    use pointers to access memory and hardware ports. We also saw how pointers
    are used to determine the endianness of a machine.
Aliasing and the restrict keyword
    were introduced. Aliasing occurs when two pointers reference the same
    object. Compilers will assume that pointers may be aliased. However, this
    can result in inefficient code generation. The restrict keyword allows the compiler to perform
    better optimization.
We saw how pointers can be used with threads and learned about the
    need to protect data shared through pointers. In addition, we examined
    techniques to effect callbacks between threads using function
    pointers.
In the last section, we examined opaque pointers and polymorphic
    behavior. Opaque pointers enable C to hide data from a user. Polymorphism
    can be incorporated into a program to make it more maintainable.
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