
The Wayback Machine - http://web.archive.org/web/20160310173708/https://pragprog.com/magazines/2012-03/the-nor-…
Skip to main content

Log in

Books/Videos

Back

Books/Videos

Books
Video
Audio
Training
Magazine

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

1 of 24 07/06/2021, 13:58

Help

Back

Help

Forums
Resources
Support

Cart (0)

Search

Search…

Go

Search our catalog…

Search

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

2 of 24 07/06/2021, 13:58

Cart (0)

Search our catalog…

Search

Log in

Books/Videos

Books
Video
Audio
Training
Magazine

Help

Forums
Resources

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

3 of 24 07/06/2021, 13:58

Support

small medium large xlarge

×

The NOR Machine

Build a CPU with Only One Instruction

by Alexander Demin

Build an assembler and an emulator for a single-instruction CPU and implement a non-trivial algorithm on it,
using Ruby as a macro DSL to compile it all.

Have you ever developed in an assembly language? Have you developed an assembly language? Ever developed a CPU
running your own assembly language?

There may be some who said “yes” to all three questions. But even for those readers, this article may have something new
to offer. We are going to:

1. Develop a CPU that performs only one primitive instruction.

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

4 of 24 07/06/2021, 13:58

2. Write a non-trivial calculation in this CPU’s single-instruction assembly language.

3. Use Ruby as a macro domain-specific language to compile it all.

At the end we will have an assembler and an emulator of that single instruction CPU, along with an implementation of a
non-trivial algorithm on it, and some Ruby code that looks like no Ruby code you’ve ever seen.

Why would we want to do this? What, doesn’t it sound like fun?

One Function to Build Them All

I picked up an idea years ago in a FIDO discussion group, RU.HACKER. With a minor improvement, that idea will become
the heart of our CPU.

The idea is to use just one function to compute everything. It suffices to do this for bits: bytes consist of bits, and if we can
compute bits, we also can compute bytes, and everything made up of bytes. That is, everything.

There are sixteen boolean functions of two arguments. Two of them are special: NOR and NAND. The other fourteen
functions can be computed using only either NOR or NAND. We’ll use NOR.

Not surprisingly, NOR can be expressed via other functions:

NOR(a, b) = NOT(OR(a, b))

NOR’s truth table is as follows:

===== ========

Input Output

===== ========

 A B A NOR B

----- --------

 0 0 1

 0 1 0

 1 0 0

 1 1 0

===== ========

Remember, all other boolean functions of one or two arguments can be computed from NOR. For example:

NOT(a) = NOR(a, a)

AND(a, b) = NOT(OR(NOT(a), NOT(b)))

OR(a, b) = NOT(NOR(a, b))

XOR(a, b) = OR(AND(a, NOT(b)), AND(NOT(a), b)))

Defining Our CPU’s Architecture

So NOR gives us everything we need to compute anything in bits. All right, we have established our single function. Now
let’s sketch out an overall architecture for our CPU.

We will have a linear memory organization containing 2^16 (65536 or 0xFFFF), cells, and consequently a range of valid
addresses from 0 (0x0000) to 65535 (0xFFFF), 16 bits per address. So far this CPU is similar to classical microprocessors
like the Intel 8080 or Zilog Z80. But from here on it’s going to get really different.

The first significant difference is that memory cells in our CPU will be 16-bit, not 8-bit, so one cell can hold a range of
values from 0x0000 to 0xFFFF.

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

5 of 24 07/06/2021, 13:58

The next difference is more important. Normally, in both RISC and CISC architectures of modern CPUs, each individual
instruction consists of two parts: an operation code, or opcode, and some number of arguments. The opcode specifies an
operation to perform and the arguments define the details of a particular instruction.

But remember, our CPU understands only one instruction. So we don’t need the opcode, because we always compute NOR!
Our instructions will only contain the arguments—the arguments of NOR.

Now we have to settle on a binary format for our instructions. Each instruction will reside in three consecutive cells in the
memory. The first and second cells will contain addresses of the NOR arguments, a and b respectively. The third argument
will contain the address where the result of the NOR will be placed.

Imagine our memory as a linear array mem of 16-bit values:

mem[0], mem[1], mem[2], mem[3], ..., mem[65534], mem[65535]

Consider an instruction at the address 1. It occupies three cells: 1, 2, and 3. To process this instruction, our CPU has to
execute the following:

1. take a value from mem[1] and name it addr_a

2. take a value from mem[addr_a] and name it a

3. take a value from mem[2] and name it addr_b

4. take a value from mem[addr_b] and name it b

5. compute r = NOR(a, b)

6. take a value from mem[3] and name it addr_r

7. put r to mem[addr_r]

We can generalize this by introducing a register called IP (we’ll consider registers in a minute), an instruction pointer,
holding an address of the current instruction. Let’s write down the algorithm in a pseudo code:

mem[mem[IP + 2]] = NOR(mem[mem[IP + 0]], mem[mem[IP + 1]])

Once an instruction is processed, we increment IP by 3 and repeat again. You may notice that this loop is infinite, similar to
a real CPU. Of course, when we develop an emulator for our CPU we will define a special case when the CPU halts.

Creating Registers

Okay, we have the memory model and the instruction format. Now we need to think about registers. In real CPUs the
registers are a bunch of cells usually residing on the main chip and can be read or written very quickly. These cells are
supposed to contain data that will be accessed frequently.

Our CPU is not real hardware and we don’t have that fast on-chip memory for registers, so we’ll just put the registers of our
CPU into the main memory (from now on, just memory), in fact, into the mem array. This is a very interesting trick. We’ll
see why in a second.

We have already declared one register, called IP, holding an address of the current instruction. Because our registers are in
the memory, the IP register is also in the memory. We said the instructions in our CPU get data from two cells, calculate
NOR, and put a result into another cell. Our IP register is a regular cell in the memory, which means it can be changed
similarly to other cells by any instruction. This is how we’re going to implement branching.

Looking ahead, you could already guess that our CPU holds the registers, the code, and data in the same memory (the mem
array).

Everything is ready to implement the main loop of our CPU. Let’s do it in Ruby:

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

6 of 24 07/06/2021, 13:58

def nor(a, b)

 ~(a | b) & 0xFFFF

end

while true do

 i = mem[IP]

 a = mem[i + 0]

 b = mem[i + 1]

 r = mem[i + 2]

 mem[ip] = i + 3

 f = nor(mem[a], mem[b])

 mem[r] = f

end

A Ruby IP variable specifies an address on the IP register in the mem array.

Also, you have probably noticed that a function nor(a, b) doesn’t do just a single 1-bit NOR operation, but it computes
sixteen NORs in parallel (remember, our registers and memory cells are 16-bit): bit-wise NOR between a and b.

Creating More Instructions

All right, our CPU is almost ready. Now we need to learn how to write programs on it. We can compute NOR and other
boolean functions. But this is not enough. We need to implement data copying, branching, and multi-bit arithmetic.

At this point it is worthwhile to introduce a slightly different notation for our NOR-based assembly language. Previously we
used a notation of functions (for example, NOT(a) = NOR(a, a)), but let’s change it to an assembly language.

Our primitive instruction NOR will have following syntax:

NOR a, b, r

The first word in the line is an instruction name (NOR) and then arguments follow.

Let’s rewrite other functions into this notation. Also, for compound functions, we will use a pseudo macro assembler
syntax.

NOT, defined as NOT(a) = NOR(a, a):

macro NOT a, r

 NOR a, a, r

endm

More complex operations require temporary registers. We will declare them using local keywords. These registers are
similar to IP in that they reside somewhere in the memory.

AND, defined as AND(a, b) = NOT(OR(NOT(a), NOT(b))):

macro AND a, b, r

 local t1, t2

 NOT a, t1

 NOT b, t2

 OR t1, t2, t1

 NOT t1, r

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

7 of 24 07/06/2021, 13:58

endm

OR, defined as OR(a, b) = NOT(NOR(a, b)):

macro OR a, b, r

 local t

 NOR a, b, t

 NOT t, r

endm

XOR, defined as XOR(a, b) = OR(AND(a, NOT(b)), AND(NOT(a), b))):

macro XOR a, b, r

 local t1, t2

 NOT b, t1

 AND a, t1, t1

 NOT a, t2

 AND t2, b, t2

 OR t1, t2, r

endm

A MOV command, copying data from one place to another, can be implemented relatively easily. For example, we want to
copy a word from a from address to a to address:

mem[to] = OR(mem[from], mem[from])

or in the form of a macro:

macro MOV from, to

 OR from, from, to

endm

A JMP command organically follows from MOV. If the to argument of MOV is the IP register, we effectively write a value
of to to IP and make the CPU execute the next instruction from another address, from:

mem[IP] = OR(mem[from], mem[from])

or in the form of a macro:

macro JMP to_addr

 OR to_addr, to_addr, IP

endm

Conditional branching is more interesting. Let’s set a condition parameter to be 0xFFFF if the condition is true and we do a
jump, and 0x0000 otherwise. So the conditional branching can be implemented as:

mem[IP] = OR(AND(to_addr, condition), AND(mem[IP], NOT(condition)))

or as a macro:

macro BRANCH true_addr, false_addr, condition

 local t1, t2

 AND true_addr, condition, t1

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

8 of 24 07/06/2021, 13:58

 NOT condition, t2

 AND false_addr, t2, t2

 OR t1, t2, IP

endm

If condition is 0xFFFF, we write true_addr to IP and jump, but if condition is 0x0000, we write false_addr to IP. Writing to
IP means that on the next CPU cycle the execution will continue from another address.

Implementing Basic Math

Let’s pause for a second and think what we’ve done so far.

Having only one instruction, NOR, we have built NOT, AND, OR, XOR, MOV, JMP, and BRANCH. So we now know how
to do boolean computations, copying data, and branching. Isn’t it cool?

Agreed, we lack multi-bit arithmetic. We really only need summation. With summation we can build subtraction,
multiplication, and division. And once we have all of these, we can program any algorithm on our CPU.

A very important point is that we need 16-bit summation. Remember, one instruction in our CPU computes bit-wise NOR.
This means that one bit from the a argument and its corresponding bit from b affect only one resulting bit of r. But an
algorithm of the full binary adder entails the concept of carry, where we have to carry an extra bit to the summation of the
next binary digit.

Currently we cannot move bits from one position to another. We have no shift operation. Let’s improve the main CPU loop.

We introduce one extra register and call it SHIFT_REG. This register will contain the result of the last NOR operation
cyclicaly shifted to the left.

while true do

 i = mem[IP]

 a = mem[i + 0]

 b = mem[i + 1]

 r = mem[i + 2]

 mem[ip] = i + 3

 f = nor(mem[a], mem[b])

 mem[r] = f

 mem[SHIFT_REG] = ((f >> 15) & 1) | ((f & 0x7FFF) << 1)

end

The last line computes a cyclic left shift of the last NOR and stores the result to the SHIFT_REG register.

Now let’s build a full binary adder.

The full binary adder has the following logic (suppose that a and b are bits):

sum = (a ^ b) ^ carry

carry = (a & b) | (carry & (a ^ b))

Here a and b are arguments of summation and carry equals 1 if the previous summation had an overflow and we need to
take this fact into account.

Initially carry equals 0, and after computing sum we also update carry.

Below is an implementation of the full binary adder. This is a macro based on existing primitive functions (XOR, AND, OR
and MOVE).

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

9 of 24 07/06/2021, 13:58

; Input:

; mask - a current bit mask (0x0001, 0x0002, 0x0004, 0x0008 etc)

; This parameter specifies which bit of "a" and "b" we are

; going to add.

; carry - a carry from the previous summation

; This values is "masked" (ANDed) by the "mask" argument.

; a, b - an argument addresses

; r - an address of the result

; Output:

; r - a result

; carry - a carry to the next bit (already shifted to the left

; with respect to the "mask")

; mask - a mask shifted to the left by one bit

;

macro FADD mask, carry, a, b, r

 local t1, t2, bit_r ; Local variables

 XOR a, b, t1 ; Formula: sum = (a ^ b) ^ carry.

 XOR t1, carry, bit_r ;

 AND bit_r, mask, bit_r ; Mask all bits in 'bit_r'

 ; except the current one

 OR bit_r, r, r ; Save the bit to the result: r |= sum

 AND a, b, t2 ; Formula:

 ; carry = (a & b) | (carry & (a ^ b))

 AND carry, t1, t1 ;

 OR t2, t1, carry ; The carry is calculated. Its left

 ; shifted copy is in SHIFT_REG.

 MOV SHIFT_REG, carry ; (1): Assign the carry to itself but

 ; shifted the next bit.

 MOV mask, mask, mask ; (2): Dummy assignment to just get:

 ; SHIFT_REG = mask << 1.

 MOV SHIFT_REG, mask ; (3): mask = SHIFT_REG = mask << 1

 AND carry, mask, carry ; Mask all bits in 'carry'

 ; except the current one

endm

A trick occurs at the line labeled (1). On the line previous to (1) we update carry and after that OR operation, the
SHIFT_REG register holds a value of carry shifted to the left. At line (1) we copy that shifted value of carry to carry itself.

Another interesting trick is at lines (2) and (3). At line (2) we do a “weird” operation MOV mask, mask, mask which seems
to be doing nothing at all and definitely doesn’t change mask. But behind the scenes, the MOV operation also shifts the
value of mask to the left and stores the result into S. Then on line (3) we copy that shifted value back to mask. By doing
those lines (2) and (3) we prepare mask for summation of the next bit. Finally we clean up carry by zeroing to all except the
current, pointed to by mask.

Okay, are you ready for the full 16-bit adder? Here we go.

To make the source shorter we need to introduce one more feature to our pseudo macro assembler: a construct to repeat
lines. Its syntax will be *[number]. If a line has such prefix, for example, *16, this line will be repeated a [number] of times.

Now the full 16-bit adder macro:

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

10 of 24 07/06/2021, 13:58

; Input:

; a, b - arguments

; carry - a carry (the least significant bit only matters)

; Output:

; r - the result: r = a + c + carry

; carry - a carry (the least significant bit only matters)

;

macro ADC a, b, carry, r

 local mask ; Local variables.

 XOR r, r, r ; Set r = 0

 MOV CONST_1, mask ; The initial mask value = 0x0001.

 *16 FADD mask, carry, a, b, t ; Repeat FADD 16 times (no loops,

 ; just a repetition).

 MOV t, r ; Move the result 'r'.

endm

We have called the macro ADC which stands for “Addition with Carry.”

We initialize a result to 0 and then put 0x0001 to mask. We introduce a special cell called CONST_1. This cell simply
contains a value of 0x0001. Then we repeat the FADD macro sixteen times. Remember, on each step the FADD updates
carry and mask for the next iteration. After sixteen FADD repetitions the carry has been cyclicaly shifted from the most
significant sixteenth bit to the lowest significant first bit.

That is it. The full 16-bit summation with carry is ready.

Programming a Real Algorithm

Let me recap once again what we have so far. We have 64K memory of 16-bit values and two registers, IP and
SHIFT_REG. We can do boolean functions, we can copy cells and do branching, and finally we have 16-bit summation
with carry.

Now we have enough to program any algorithm on our CPU.

You may say we lack the call stack and the concept of subroutines. Do you want to implement them? Let’s implement two
auxiliary operations for indirect data access first.

We call them PEEK and POKE, similar to operators in the BASIC language, where the first one returns a value from a
given address and the second one puts a value to a given address. Implementations of these operations are interesting
because we will write code modifying itself on the fly. This is possible because the registers, code, and data in our CPU
share the same address space, the memory.

Okay, let’s do PEEK first.

; This macro reads a value from the address given in "a"

; and stores it to the cell whose address is "b."

;

; Input:

; a - an address

; Output

; b - a values from a cell addressed by "a"

;

; This is an indirect addressing: [a] -> b

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

11 of 24 07/06/2021, 13:58

;

macro PEEK a, b

 local t

 MOV a, label1 ; In these two lines we create

 MOV a, label2 ; a "NOT x, y, t" command on-the-fly.

 label1: ; Initially there is a "NOT 0, 0, t"

 dw 0 ; command here but by two previous "MOV"s

 label2: ; we replace two zeros from with

 dw 0 ; a concrete value of "a"

 dw t

 NOT t, b ; Final NOT to "b".

endm

Technically, PEEK is similar to MOV. It does two subsequent NOTs to copy a value from one cell to another. The trick is
that we modify the first NOT by injecting the concrete address a. The second NOT is a regular one. The label1 and label2
are local for this macro.

Let’s implement POKE.

; This macro writes a given value "a"

; to a cell addressed by "b."

;

; Input:

; a - a value

; b - an address

; Output:

; None.

;

; This is an indirect addressing: a -> [b]

;

macro POKE a, b

 local t

 MOV b, label ; We create a "NOT t, t, x" command on-the-fly.

 NOT a, t ; This is a regular "NOT" operation.

 dw @t ; This is a "NOT t, t, 0" command

 dw @t ; and by the first "MOV" in the macro

 label: ; we replace that "0" with a value of "b"

 dw 0

endm

POKE also uses the MOV technique. It has two subsequent NOT operations and the second one is being modified on the fly
by injecting the concrete address of b.

How cool is that?!

PEEK and POKE are very powerful operations. Having them, it is very easy to implement a concept of the call stack to be
able to call subroutines. I leave it as an exercise for the readers.

Let’s make our CPU compute something useful. For example, CRC16.

The algorithm in Ruby might look like:

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

12 of 24 07/06/2021, 13:58

def calc_crc16(data)

 crc = 0xFFFF

 data.each_byte do |x|

 crc = crc ^ (x & 0xFF)

 8.times do

 shift = (crc & 1) != 0

 crc = crc >> 1

 crc = crc ^ 0x8401 if shift

end

end

return crc

end

Usually when people develop in an assembly language they use a translator, an assembler, converting a text representation
of CPU instructions into machine code. Also the assembler can do macro substitution (we have already used macros, and
we do need this functionality), data allocation, and symbolic labels.

The assembler in most cases is a standalone application that takes a source in the assembly language and produces a binary.

To make our stuff a bit more fun we’ll use another approach. We will use Ruby as our assembler. We will develop a few
helper functions, allowing us to write regular Ruby code, and the code will automatically produce our NOR-based machine
code. You’ll be amazed at how great Ruby is at doing that.

And finally we’ll run a compiled binary on the emulator.

Let’s begin not from the low-level helpers, but from the CRC implementation.

The code below computes the CRC-16 from a string given in a needle variable. I know, some macros and commands may
look new to you, but we’ll consider them shortly.

Just reflect on this code for a second. Does it look like Ruby at all? To me it looks like assembly language. Here you can
unfold the magic of Ruby because it is Ruby. The tiny helper functions make it possible.

needle = literal Example + "\x00"

i, ch, t, ptr, crc16 = var 5

label :entry

 MOVi 0xFFFF, crc16

 MOVi needle, ptr

label :crc_loop # crc_loop:

 PEEK ptr, ch # ch = *ptr

 IS_0 ch # is ch == 0?

 JZi :exit # if yes, goto "exit"

 ANDi ch, 0xFF, ch # ch &= 0xFF

 XOR crc16, ch, crc16 # crc16 ^= ch

 MOVi 8, i

label :loop_i # crc_loop_i:

 ANDi crc16, 1, t # t = crc16 & 1

 SHR crc16, crc16 # crc16 >>= 1

 IS_0 t # is t == 0?

 JZi :skip_xor # if yes, goto "skip_xor"

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

13 of 24 07/06/2021, 13:58

 XORi crc16, 0x8401, crc16 # crc16 ^= 0x8401

label :skip_xor # skip_xor:

 ADDi i, 0xFFFF, i # i -= 1

 IS_0 i # is i == 0?

 JNZi :loop_i # if not, goto "loop_i"

 ADDi ptr, 0x0001, ptr # ptr += 1

 JMPi :crc_loop # goto crc_loop

 label :exit

 EXITi()

The Full Source

All right, now we are approaching the finish line. We’ll go through the entire source of the program in Ruby, which contains
this CRC-16 calculation code, the helper functions, NOR-based binary generation routines, and, finally, the emulator of our
CPU.

When this code runs, it calculates CRC-16 twice, using our NOR CPU and a regular Ruby implementation. I hope the
results will match!

Line 1 sets up a string we use to calculate CRC-16.

1 Example = "String for testing"

From lines 2 to 37 there are helper functions allowing us to make Ruby code look so close to the assembly. We have
functions:

to declare and set symbolic labels (make_label() in line 8 and label(), line 14)

to place NOR code into the assembly (code() in line 15)

to place a string into the assembly (literal() in line 16)

to declare and place into the assembly different types of variables and constants (static() in line 21, var() in line 24,
init_var() in line 29, and const in line 34)

 2 Text = []

 3 Labels = []

 4 Statics = {}

 5 Consts = {}

 6 Vars = {}

 7 Literals = {}

 8 def make_label(name = "")

 9 name = name.to_s

10 name = "label_%d" % Labels.size if name.empty?

11 Labels.push name

12 return name

13 end

14 def label(name) Text.push "#" + name.to_s end

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

14 of 24 07/06/2021, 13:58

15 def code(value) Text.push " %s" % value end

16 def literal(value)

17 name = "str_%d" % Literals.size

18 Literals[name] = value

19 return name

20 end

21 def static(*names)

22 names.each { |name| Statics[name] = 0 }; names

23 end

24 def var(count = 1)

25 names = []

26 count.times { Vars[(names.push "var_%d" % Vars.size).last] = 0 }

27 return names

28 end

29 def init_var(value)

30 name = "var_%d" % Vars.size

31 Vars[name] = value

32 return name

33 end

34 def const(value)

35 return Consts[value] if Consts.has_key? value

36 Consts[value] = "const_%d" % Consts.size

37 end

In lines 38-39 we define the main registers of our CPU: IP, SHIFT_REG, CARRY_REG, and ZERO_REG.

38 IP = init_var :entry

39 SHIFT_REG, CARRY_REG, ZERO_REG = var 3

The function NOR() in line 40 is our main building block. All other functions are built using this one. This function places
into the assembly three words of the instruction.

40 def NOR(a, b, r)

41 code a

42 code b

43 code r

44 end

In lines 45-89 we define the bit-wise boolean functions jump and move. Their implementations repeat exactly what we’ve
discussed previously. The static helper function allows us to define temporary variables for each macro. These temporary
variable are singletons. There is one instance of each variable (for example, OR_t) across all invocation of a macro where it
is defined.

It is worthwhile to look at functions having “i” in the name (ANDi() in line 60, XORi() in line 73, JMPi() in line 84 and

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

15 of 24 07/06/2021, 13:58

MOVi() in line 87). These functions have an immediate value in the second parameter. Normally all arguments of our
macros are addresses pointing to the values, not values per se. Each of these functions has to place the immediate value to a
temporary variable first and then use the const() helper to create an unnamed constant.

45 def NOT(a, r)

46 NOR a, a, r

47 end

48 def OR(a, b, r)

49 t = static :OR_t

50 NOR a, b, t

51 NOT t, r

52 end

53 def AND(a, b, r)

54 t1, t2 = static :AND_t1, :AND_t2

55 NOT a, t1

56 NOT b, t2

57 OR t1, t2, t1

58 NOT t1, r

59 end

60 def ANDi(a, imm, r)

61 t = static :ANDi_t

62 MOVi imm, t

63 AND a, t, r

64 end

65 def XOR(a, b, r)

66 t1, t2 = static :XOR_t1, :XOR_t2

67 NOT a, t1

68 NOT b, t2

69 AND a, t2, t2

70 AND b, t1, t1

71 OR t1, t2, r

72 end

73 def XORi(a, imm, r)

74 t = static :XORi_t

75 MOVi imm, t

76 XOR a, t, r

77 end

78 def MOV(a, b)

79 OR a, a, b

80 end

81 def JMP(a)

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

16 of 24 07/06/2021, 13:58

82 MOV a, IP

83 end

84 def JMPi(a)

85 JMP const(a)

86 end

87 def MOVi(imm, a)

88 MOV const(imm), a

89 end

In lines 90-105 there is an implementation of a PEEK() function. As we have discussed previously this function applying
indirect addressing has to modify its code on the fly by injecting the a value to the second NOR (line 97-103). We create
two labels l1 and l2 (lines 92 and 93) and use them (lines 98 and 100) to address the locations where a has to be injected.

 90 # [a] -> b

 91 def PEEK(a, b)

 92 l1 = make_label

 93 l2 = make_label

 94 MOV a, l1

 95 MOV a, l2

 96 t = static :PEEK_t

 97 # BEGIN: NOR 0, 0, t

 98 label l1

 99 code 0 # <- a [initially '0']

100 label l2

101 code 0 # <- a [initialli '0']

102 code t

104 NOT t, b

105 end

In lines 106-118 there is a POKE() function. This function also does indirect addressing; that’s why it modifies itself similar
to PEEK(). We create a label l in line 108 and place it in line 115. The label l identifies a location to inject the value of b.

106 # a -> [b]

107 def POKE(a, b)

108 l = make_label

109 MOV b, l

110 t = static :POKE_t

111 NOT a, t

112 # BEGIN: NOR t, t, 0

113 code t

114 code t

115 label l

116 code 0 # <- b [initially '0']

118 end

In lines 119-121 there is a function halting our CPU. We haven’t discussed yet how to stop the CPU. Below is one possible
way. Say we stop the CPU when IP becomes equal to 0xFFFF. Of course, the emulator needs to implement this behavior,
and you’ll see it further down.

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

17 of 24 07/06/2021, 13:58

119 def EXITi

120 MOVi 0xFFFF, IP

121 end

The Full Binary Adder

In lines 122-149 there is an implementation of the full binary adder. The function FADD() does what we discussed, and the
implementation is nicely wrapped into Ruby helpers. Note that this function doesn’t use the CARRY_REG register directly
(as with SHIFT_REG). Instead it uses the carry argument passed from a caller function.

122 def FADD(mask, carry, a, b, r)

123 tmp_a, tmp_b, bit_r = static :FADD_a, :FADD_b, :FADD_bit_r

124 t1, t2 = static :FADD_t1, :FADD_t2

125

126 AND a, mask, tmp_a # zeroing bits in 'a' except mask'ed

127 AND b, mask, tmp_b # zeroing bits in 'b' except mask'ed

128 AND carry, mask, carry # zeroing bits in 'carry' except mask'ed

129 # SUM = (a ^ b) ^ carry

130 XOR a, b, t1

131 XOR t1, carry, bit_r

132 # Leave only 'mask'ed bit in bit_r.

133 AND bit_r, mask, bit_r

134 # Add current added bit to the result.

135 OR bit_r, r, r

136 # carry = (a & b) | (carry & (a ^ b))

137 AND a, b, t2

138 AND carry, t1, t1

139 # carry is calculated, and 'SHIFT_REG' contains the same value

140 # but shifted to the left by 1 bit.

141 OR t2, t1, carry

142 # CARRY is shifted to the left by 1 bit for the next round.

143 MOV SHIFT_REG, carry

144 # SHIFT_REG = mask << 1

145 MOV mask, mask

146 # mask = shift (in fact, "mask = mask << 1")

147 MOV SHIFT_REG, mask

148 AND carry, mask, carry

149 end

A function ZERO() in line 150-152 uses the XOR trick to put 0 into its argument.

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

18 of 24 07/06/2021, 13:58

150 def ZERO(a)

151 XOR a, a, a

152 end

In lines 153-166 there is an ADC() function implementing 16-bit summation with carry. In line 157 it calls FADD() sixteen
times and then copies the result to r in line 158.

Please consider the lines 159-166. After iterating the FADD() function we have CARRY_REG equal to 0x0000 if there was
no overflow during summation, or 0x0001 if there was. As you remember, where we were talking about the BRANCH()
function, we said that it expects the condition to be either 0x0000 (false) or 0xFFFF (true). We are going to use
CARRY_REG as the condition later on, so we have to convert 0x0001 to 0xFFFF.

In lines 159-165 we rotate the values of CARRY_REG (0x0001) across all sixteen bits of the word and in each position we
OR it with t. By doing that we’re spreading that 1 in the lowest significant position to all the bits in the word, and eventually
0x0001 becomes 0xFFFF.

153 def ADC(a, b, r)

154 mask, t = static :ADC_mask, :ADC_t

155 ZERO t

156 MOVi 0x0001, mask

157 16.times { FADD mask, CARRY_REG, a, b, t }

158 MOV t, r

159 ZERO t # Set t = 0.

160 16.times do # Rotate "CARRY_REG" 16 times.

161 OR t, CARRY_REG, t # t |= CARRY_REG

162 MOV CARRY_REG, CARRY_REG # SHIFT_REG = CARRY_REG << 1

163 MOV SHIFT_REG, CARRY_REG # CARRY_REG = CARRY_REG << 1

164 end

165 MOV t, CARRY_REG # CARRY_REG = t

166 end

In lines 167-175 there are two wrappers of ADC performing summation without using CARRY_REG.

167 def ADD(a, b, r)

168 ZERO CARRY_REG

169 ADC a, b, r

170 end

171 def ADDi(a, imm, r)

172 t = static :ADDi_t

173 MOVi imm, t

174 ADD a, t, r

175 end

In lines 176-187 there are functions for conditional branching. The main idea is to use OR() (line 182) as a decision maker.

176 # Jump 'a', if cond = FFFF, and 'b' if cond = 0000

177 def BRANCH(a, b, cond)

178 t1, t2 = static :BRANCH_t1, :BRANCH_t2

179 AND a, cond, t1 # t1 = a & cond

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

19 of 24 07/06/2021, 13:58

180 NOT cond, t2 # t2 = !cond

181 AND b, t2, t2 # t2 = b & t2 = b & !cond

182 OR t1, t2, IP # ip = (a & cond) | (b & !cond)

183 end

184 # Jump 'a', if cond = FFFF, and 'b' if conf = 0000

185 def BRANCHi(a, b, cond)

186 BRANCH const(a), const(b), cond

187 end

In line 188-194 there is a function we haven’t seen yet. It checks whether the a argument is zero or not. It adds 0xFFFF to a,
and there is only one value of a possible when the overflow doesn’t happen and CARRY_REG is 0 afterwards. This value is
0. If a is non-zero, there will be an overflow and CARRY_REG will become 0xFFFF. Then we negate the value of
CARRY_REG and assign it to ZERO_REG.

So, if a is 0 this function sets ZERO_REG to 0xFFFF, or 0x0000 otherwise.

188 # if a != 0 then ZERO_REG = FFFF else ZERO_REG = 0000

189 def IS_0(a)

190 t = static :IS_0_t

191 ZERO CARRY_REG

192 ADC a, const(0xFFFF), t

193 NOT CARRY_REG, ZERO_REG

194 end

In lines 709-716 there are two functions doing conditional branching. They almost repeat the functionality of BRANCHi
except that if the condition is false they carry on execution from the next instruction. This is implemented by introducing a
bypass label pointing to an address right after the macro.

195 # ip = (ZERO_REG == FFFF ? a : ip)

196 def JZi(a)

197 bypass = make_label

198 BRANCHi a, bypass, ZERO_REG

199 label bypass

200 end

201 # ip = (ZERO_REG == FFFF ? a : ip)

202 def JNZi(a)

203 bypass = make_label

204 BRANCHi bypass, a, ZERO_REG

205 label bypass

206 end

In lines 725-224 there are functions doing different kinds of shifts. They all are based on the SHIFT_REG register.

207 def ROL(a, b)

208 MOV a, a # SHIFT_REG = a << 1

209 MOV SHIFT_REG, b

210 end

211 def ROR(a, b)

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

20 of 24 07/06/2021, 13:58

212 t = static :ROR_t

213 MOV a, t

214 15.times { ROL t, t }

215 MOV t, b

216 end

217 def SHL(a, b)

218 ROL a, b

219 ANDi b, 0xFFFE, b

220 end

221 def SHR(a, b)

222 ROR a, b

223 ANDi b, 0x7FFF, b

224 end

The CRC-16 Algorithm

All right, at last in lines 225 to 251 we have our CRC-16 algorithm implemented via the functions we created previously.
There are two loops. The outer one (crc_loop label) iterates over the source string via the ptr pointer up to the \x00
character. The inner loop iterates eight times over the current byte and applies the CRC-16 routine.

Ignoring for a moment what this code is doing, let’s just reflect on it. It doesn’t really look like Ruby. It looks like assembly
language!

225 # NORCPU code

226 needle = literal Example + "\x00"

227 i, ch, t, ptr, crc16 = var 5

228 label :entry

229 MOVi 0xFFFF, crc16

230 MOVi needle, ptr

231 label :crc_loop # crc_loop:

232 PEEK ptr, ch # ch = *ptr

233 IS_0 ch # is ch == 0?

234 JZi :exit # if yes, goto "exit"

235 ANDi ch, 0xFF, ch # ch &= 0xFF

236 XOR crc16, ch, crc16 # crc16 ^= ch

237 MOVi 8, i

238 label :loop_i # crc_loop_i:

239 ANDi crc16, 1, t # t = crc16 & 1

240 SHR crc16, crc16 # crc16 >>= 1

241 IS_0 t # is t == 0?

242 JZi :skip_xor # if yes, goto "skip_xor"

243 XORi crc16, 0x8401, crc16 # crc16 ^= 0x8401

244 label :skip_xor # skip_xor:

245 ADDi i, 0xFFFF, i # i -= 1

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

21 of 24 07/06/2021, 13:58

246 IS_0 i # is i == 0?

247 JNZi :loop_i # if not, goto "loop_i"

248 ADDi ptr, 0x0001, ptr # ptr += 1

249 JMPi :crc_loop # goto crc_loop

250 label :exit

251 EXITi()

In lines 252-278 we build our assembly. In lines 253-257 we join all the parts (code, labels, variables, constants, and
strings) together into the assembly array. The labels have a # prefix.

252 assembly = []

253 Vars.each { |k, v| assembly.push "#%s" % k, v }

254 Text.each { |x| assembly.push x }

255 Statics.each { |k, v| assembly.push "#%s" % k, v }

256 Consts.each { |k, v| assembly.push "#%s" % v, k }

257 Literals.each do |k, v|

258 assembly.push "#%s" % k

259 v.each_byte { |x| assembly.push x }

260 end

In lines 261-270 we walk through the assembly, calculate the labels’ addresses, and store them into the labels dictionary.

261 offset = 0

262 labels = {}

263 assembly.each do |x|

264 x = x.to_s

265 if x.start_with? '#' then

266 labels[x[1..-1]] = offset

267 else

268 offset = offset + 1

269 end

270 end

Finally, in lines 271-278 we cut out the labels from the assembly and replace the symbolic label names with concrete
values.

271 # Remove all list having labels.

272 assembly.delete_if { |x| x.to_s.start_with? "#" }

273 # Substitute labels by values.

274 assembly.collect! do |x|

275 x = x.to_s.strip

276 subst = labels[x]

277 (if subst == nil then x else subst end).to_i

278 end

Now we have our code fully compiled and built into a sequence of NOR commands. It is in the assembly array.

In line 279-297 there is the NOR CPU emulator—the heart of our long journey. It executes the NOR code taken from the
assembly until a halt condition when IP becomes equal to 0xFFFF (remember the EXITi macro?)

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

22 of 24 07/06/2021, 13:58

279 def nor(a, b)

280 ~(a | b) & 0xFFFF

281 end

282 ip = labels[IP]

283 shift_reg = labels[SHIFT_REG]

284 puts "Start"

285 mem = assembly

286 while true do

287 i = mem[ip]

288 a = mem[i + 0]

289 b = mem[i + 1]

290 r = mem[i + 2]

291 mem[ip] = i + 3

292 f = nor(mem[a], mem[b])

293 mem[r] = f

294 mem[shift_reg] = ((f >> 15) & 1) | ((f & 0x7FFF) << 1)

295 break if mem[ip] == 0xFFFF

296 end

Once the execution is complete, we print the content of the crc16 variable, which should contain our CRC16 value (line
297).

297 puts "NOR CPU CRC16: %04X" % mem[labels[crc16]]

In lines 298-310 we calculate CRC16 again using a purely Ruby implementation to make sure that our wonderful NOR-
based program works correctly.

298 def calc_crc16(data)

299 crc = 0xFFFF

300 data.each_byte do |x|

301 crc = crc ^ (x & 0xFF)

302 8.times do

303 shift = (crc & 1) != 0

304 crc = crc >> 1

305 crc = crc ^ 0x8401 if shift

306 end

307 end

308 return crc

309 end

310 puts "Ruby CRC16: %04X" % calc_crc16(Example)

Wow! We’re done!

At last we can run it (presuming you have the source in the file norcpu.rb).

ruby norcpu.rb

And hopefully it should print:

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

23 of 24 07/06/2021, 13:58

Start

NOR CPU CRC16: F6AD

Ruby CRC16: F6AD

If the values match, it proves that our NOR-based CPU works.

To play with the source, you can download it from the magazine website.

Reflecting on what we have done, you might notice a serious drawback to our CPU: the number of NOR instructions to do
even simple calculations is really big. For example, the size of our assembly code for calculating the tiny CRC16 algorithm
is already 20273 words, a third of our memory size! So, an implementation of more sophisticated algorithms would require
us to change the memory model to be at least 32-bit.

To be honest I don’t see any real applications for such a CPU, but in educational terms I believe it has served well. Anyway,
I hope it was a fun little exercise!

Alexander Demin is a software engineer and Ph.D. in Computer Science. Constantly exploring new
technologies, he believes that something amazing is always out there. He can be contacted at
alexander@demin.ws or found at his home page or blog.

Send the author your feedback or discuss the article in the magazine forum.

Continue
Shopping

View Your
Cart

© 1999–2016 The Pragmatic Programmers, LLC

Meet the team
Contact
Write For Us
Privacy
Security
Legal

The Pragmatic Bookshelf | PragPub March 2012 | The NOR Machine http://web.archive.org/web/20160310173708/https://pragprog.com/maga...

24 of 24 07/06/2021, 13:58

